×

Free-streaming and coupled dark radiation isocurvature perturbations: constraints and application to the Hubble tension. (English) Zbl 1506.83056

MSC:

83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
83E30 String and superstring theories in gravitational theory
81V80 Quantum optics
62F10 Point estimation
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
80A10 Classical and relativistic thermodynamics
58J47 Propagation of singularities; initial value problems on manifolds
70H45 Constrained dynamics, Dirac’s theory of constraints
81V15 Weak interaction in quantum theory

References:

[1] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[2] Green, Daniel, Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics, Bull. Am. Astron. Soc., 51, 159 (2019)
[3] V.F. Shvartsman, Density of Relict Particles with Zero Rest Mass in the Universe, ZhETF Pisma Redaktsiiu9 (1969) 315.
[4] Steigman, G.; Schramm, D. N.; Gunn, J. E., Cosmological Limits to the Number of Massive Leptons, Phys. Lett. B, 66, 202-204 (1977) · doi:10.1016/0370-2693(77)90176-9
[5] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[6] Hu, Wayne; White, Martin J., Acoustic signatures in the cosmic microwave background, Astrophys. J., 471, 30-51 (1996) · doi:10.1086/177951
[7] Bashinsky, Sergei; Seljak, Uros, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.083002
[8] Hou, Zhen; Keisler, Ryan; Knox, Lloyd; Millea, Marius; Reichardt, Christian, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.083008
[9] Chelouche, Doron; Rabadan, Raul; Pavlov, Sergey; Castejon, Francisco, Spectral Signatures of Photon-Particle Oscillations from Celestial Objects, Astrophys. J. Suppl., 180, 1-29 (2009) · doi:10.1088/0067-0049/180/1/1
[10] Baumann, Daniel; Green, Daniel; Meyers, Joel; Wallisch, Benjamin, Phases of New Physics in the CMB, JCAP, 01 (2016) · doi:10.1088/1475-7516/2016/01/007
[11] Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi, Hidden dark matter sector, dark radiation, and the CMB, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.055033
[12] Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen, First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background, Phys. Rev. Lett., 115 (2015) · doi:10.1103/PhysRevLett.115.091301
[13] Jeong, Kwang Sik; Takahashi, Fuminobu, Self-interacting Dark Radiation, Phys. Lett. B, 725, 134 (2013) · doi:10.1016/j.physletb.2013.07.001
[14] Buen-Abad, Manuel A.; Marques-Tavares, Gustavo; Schmaltz, Martin, Non-Abelian dark matter and dark radiation, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.023531
[15] Kreisch, Christina D.; Cyr-Racine, Francis-Yan; Doré, Olivier, Neutrino puzzle: Anomalies, interactions, and cosmological tensions, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.123505
[16] Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo, Cosmological constraints on neutrino self-interactions with a light mediator, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.103526
[17] Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsin, Partially Acoustic Dark Matter, Interacting Dark Radiation, and Large Scale Structure, JHEP, 12, 108 (2016) · doi:10.1007/JHEP12(2016)108
[18] Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs, Interacting Dark Sector and Precision Cosmology, JCAP, 01 (2018) · doi:10.1088/1475-7516/2018/01/008
[19] Di Valentino, Eleonora; Bøehm, Céline; Hivon, Eric; Bouchet, François R., Reducing the H_0 and σ_8 tensions with Dark Matter-neutrino interactions, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.043513
[20] Ghosh, Subhajit; Khatri, Rishi; Roy, Tuhin S., Can dark neutrino interactions phase out the Hubble tension?, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.123544
[21] Ma, Chung-Pei; Bertschinger, Edmund, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J., 455, 7-25 (1995) · doi:10.1086/176550
[22] Hu, Wayne; Sugiyama, Naoshi, Small scale cosmological perturbations: An Analytic approach, Astrophys. J., 471, 542-570 (1996) · doi:10.1086/177989
[23] Brust, Christopher; Cui, Yanou; Sigurdson, Kris, Cosmological Constraints on Interacting Light Particles, JCAP, 08 (2017) · doi:10.1088/1475-7516/2017/08/020
[24] Blinov, Nikita; Marques-Tavares, Gustavo, Interacting radiation after Planck and its implications for the Hubble Tension, JCAP, 09 (2020) · doi:10.1088/1475-7516/2020/09/029
[25] S. Dodelson, Modern Cosmology, Academic Press, Amsterdam, The Netherlands (2003).
[26] Enqvist, Kari; Sloth, Martin S., Adiabatic CMB perturbations in pre - big bang string cosmology, Nucl. Phys. B, 626, 395-409 (2002) · doi:10.1016/S0550-3213(02)00043-3
[27] Lyth, David H.; Wands, David, Generating the curvature perturbation without an inflaton, Phys. Lett. B, 524, 5-14 (2002) · Zbl 0981.83063 · doi:10.1016/S0370-2693(01)01366-1
[28] Moroi, Takeo; Takahashi, Tomo, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B, 522, 215-221 (2001) · Zbl 0977.83120 · doi:10.1016/S0370-2693(01)01295-3
[29] Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori; Sekiguchi, Toyokazu, Isocurvature perturbations in extra radiation, JCAP, 02 (2012) · doi:10.1088/1475-7516/2012/02/022
[30] Linde, Andrei D., Generation of Isothermal Density Perturbations in the Inflationary Universe, Phys. Lett. B, 158, 375-380 (1985) · doi:10.1016/0370-2693(85)90436-8
[31] Polarski, David; Starobinsky, Alexei A., Spectra of perturbations produced by double inflation with an intermediate matter dominated stage, Nucl. Phys. B, 385, 623-650 (1992) · doi:10.1016/0550-3213(92)90062-G
[32] Polarski, David; Starobinsky, Alexei A., Isocurvature perturbations in multiple inflationary models, Phys. Rev. D, 50, 6123-6129 (1994) · doi:10.1103/PhysRevD.50.6123
[33] Langlois, David, Correlated adiabatic and isocurvature perturbations from double inflation, Phys. Rev. D, 59 (1999) · doi:10.1103/PhysRevD.59.123512
[34] Gordon, Christopher; Wands, David; Bassett, Bruce A.; Maartens, Roy, Adiabatic and entropy perturbations from inflation, Phys. Rev. D, 63 (2000) · doi:10.1103/PhysRevD.63.023506
[35] BOSS Collaboration; Alam, Shadab, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc., 470, 2617-2652 (2017) · doi:10.1093/mnras/stx721
[36] Bucher, Martin; Moodley, Kavilan; Turok, Neil, The General primordial cosmic perturbation, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.083508
[37] Adshead, Peter; Holder, Gilbert; Ralegankar, Pranjal, BBN constraints on dark radiation isocurvature, JCAP, 09 (2020) · doi:10.1088/1475-7516/2020/09/016
[38] Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong; Macri, Lucas M.; Scolnic, Dan, Large Magellanic Cloud Cepheid Standards Provide a 1 · doi:10.3847/1538-4357/ab1422
[39] Freedman, Wendy L., Measurements of the Hubble Constant: Tensions in Perspective, Astrophys. J., 919, 16 (2021) · doi:10.3847/1538-4357/ac0e95
[40] Suyu, S. H., H0LiCOW - I. H0 Lenses in COSMOGRAIL’s Wellspring: program overview, Mon. Not. Roy. Astron. Soc., 468, 2590-2604 (2017) · doi:10.1093/mnras/stx483
[41] Birrer, S., TDCOSMO - IV. Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles, Astron. Astrophys., 643, A165 (2020) · doi:10.1051/0004-6361/202038861
[42] Knox, Lloyd; Millea, Marius, Hubble constant hunter’s guide, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.043533
[43] Di Valentino, Eleonora; Mena, Olga; Pan, Supriya; Visinelli, Luca; Yang, Weiqiang; Melchiorri, Alessandro, In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav., 38 (2021) · doi:10.1088/1361-6382/ac086d
[44] Dainotti, Maria Giovanna; De Simone, Biagio; Schiavone, Tiziano; Montani, Giovanni; Rinaldi, Enrico; Lambiase, Gaetano, On the Hubble constant tension in the SNe Ia Pantheon sample, Astrophys. J., 912, 150 (2021) · doi:10.3847/1538-4357/abeb73
[45] Schöneberg, Nils; Franco Abellán, Guillermo; Pérez Sánchez, Andrea; Witte, Samuel J.; Poulin, Vivian; Lesgourgues, Julien, The H_0 Olympics: A fair ranking of proposed models (2021)
[46] Riess, Adam G., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team (2021)
[47] Malik, Karim A.; Wands, David, Cosmological perturbations, Phys. Rept., 475, 1-51 (2009) · doi:10.1016/j.physrep.2009.03.001
[48] Wands, David; Malik, Karim A.; Lyth, David H.; Liddle, Andrew R., A New approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.043527
[49] Doran, Michael; Muller, Christian M.; Schafer, Gregor; Wetterich, Christof, Gauge-invariant initial conditions and early time perturbations in quintessence universes, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.063505
[50] Valiviita, Jussi; Majerotto, Elisabetta; Maartens, Roy, Instability in interacting dark energy and dark matter fluids, JCAP, 07 (2008) · doi:10.1088/1475-7516/2008/07/020
[51] Majerotto, Elisabetta; Valiviita, Jussi; Maartens, Roy, Adiabatic initial conditions for perturbations in interacting dark energy models, Mon. Not. Roy. Astron. Soc., 402, 2344-2354 (2010) · doi:10.1111/j.1365-2966.2009.16140.x
[52] Lesgourgues, Julien, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview (2011)
[53] Langlois, David; Vernizzi, Filippo, Mixed inflaton and curvaton perturbations, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.063522
[54] Sasaki, Misao; Valiviita, Jussi; Wands, David, Non-Gaussianity of the primordial perturbation in the curvaton model, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.103003
[55] Audren, Benjamin; Lesgourgues, Julien; Benabed, Karim; Prunet, Simon, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP, 02 (2013) · doi:10.1088/1475-7516/2013/02/001
[56] Brinckmann, Thejs; Lesgourgues, Julien, MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ., 24 (2019) · doi:10.1016/j.dark.2018.100260
[57] Planck Collaboration; Aghanim, N., Planck 2018 results. V. CMB power spectra and likelihoods, Astron. Astrophys., 641, A5 (2020) · doi:10.1051/0004-6361/201936386
[58] Lewis, Antony, GetDist: a Python package for analysing Monte Carlo samples (2019)
[59] Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc., 416, 3017-3032 (2011) · doi:10.1111/j.1365-2966.2011.19250.x
[60] Ross, Ashley J.; Samushia, Lado; Howlett, Cullan; Percival, Will J.; Burden, Angela; Manera, Marc, The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc., 449, 835-847 (2015) · doi:10.1093/mnras/stv154
[61] Planck Collaboration; Ade, P. A. R., Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys., 571, A22 (2014) · doi:10.1051/0004-6361/201321569
[62] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20 (2016) · doi:10.1051/0004-6361/201525898
[63] A. Gelman and D.B. Rubin, Inference from Iterative Simulation Using Multiple Sequences, Statist. Sci.7 (1992) 457. · Zbl 1386.65060 · doi:10.1214/ss/1177011136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.