×

Possible relationship between initial conditions for inflation and past geodesic incompleteness of the inflationary spacetime. (English) Zbl 1523.83058

MSC:

83E05 Geometrodynamics and the holographic principle
81V22 Unified quantum theories
58J47 Propagation of singularities; initial value problems on manifolds
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C75 Space-time singularities, cosmic censorship, etc.
32V25 Extension of functions and other analytic objects from CR manifolds
47A10 Spectrum, resolvent

References:

[1] Linde, Andrei, On the problem of initial conditions for inflation, Found. Phys., 48, 1246-1260 (2018) · Zbl 1411.83158 · doi:10.1007/s10701-018-0177-9
[2] Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander, Inflationary space-times are incompletein past directions, Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.151301
[3] Linde, Andrei D., Chaotic Inflation, Phys. Lett. B, 129, 177-181 (1983) · doi:10.1016/0370-2693(83)90837-7
[4] Linde, Andrei D., INITIAL CONDITIONS FOR INFLATION, Phys. Lett. B, 162, 281-286 (1985) · doi:10.1016/0370-2693(85)90923-2
[5] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20 (2016) · doi:10.1051/0004-6361/201525898
[6] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[7] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[8] BICEP, Keck Collaboration; Ade, P. A. R., Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.151301
[9] Starobinsky, Alexei A.; Khalatnikov, I. M.; Mineev, V. P., A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[10] Goncharov, A. B.; Linde, Andrei D., Chaotic Inflation in Supergravity, Phys. Lett. B, 139, 27-30 (1984) · doi:10.1016/0370-2693(84)90027-3
[11] Salopek, D. S.; Bond, J. R.; Bardeen, James M., Designing Density Fluctuation Spectra in Inflation, Phys. Rev. D, 40, 1753 (1989) · doi:10.1103/PhysRevD.40.1753
[12] Bezrukov, Fedor L.; Shaposhnikov, Mikhail, The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659, 703-706 (2008) · doi:10.1016/j.physletb.2007.11.072
[13] Bezrukov, F.; Gorbunov, D.; Shaposhnikov, M., On initial conditions for the Hot Big Bang, JCAP, 06 (2009) · doi:10.1088/1475-7516/2009/06/029
[14] Garcia-Bellido, Juan; Figueroa, Daniel G.; Rubio, Javier, Preheating in the Standard Model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.063531
[15] De Simone, Andrea; Hertzberg, Mark P.; Wilczek, Frank, Running Inflation in the Standard Model, Phys. Lett. B, 678, 1-8 (2009) · doi:10.1016/j.physletb.2009.05.054
[16] Bezrukov, F.; Shaposhnikov, M., Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP, 07, 089 (2009) · doi:10.1088/1126-6708/2009/07/089
[17] Barvinsky, A. O.; Kamenshchik, A. Yu.; Kiefer, C.; Starobinsky, A. A.; Steinwachs, C., Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP, 12 (2009) · doi:10.1088/1475-7516/2009/12/003
[18] Giudice, Gian F.; Lee, Hyun Min, Unitarizing Higgs Inflation, Phys. Lett. B, 694, 294-300 (2011) · doi:10.1016/j.physletb.2010.10.035
[19] Okada, Nobuchika; Rehman, Mansoor Ur; Shafi, Qaisar, Tensor to Scalar Ratio in Non-Minimal ϕ^4 Inflation, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.043502
[20] Bezrukov, F.; Gorbunov, D., Light inflaton after LHC8 and WMAP9 results, JHEP, 07, 140 (2013) · doi:10.1007/JHEP07(2013)140
[21] Linde, Andrei; Noorbala, Mahdiyar; Westphal, Alexander, Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP, 03 (2011) · doi:10.1088/1475-7516/2011/03/013
[22] Kallosh, Renata; Linde, Andrei, Universality Class in Conformal Inflation, JCAP, 07 (2013) · doi:10.1088/1475-7516/2013/07/002
[23] Ferrara, Sergio; Kallosh, Renata; Linde, Andrei; Porrati, Massimo, Minimal Supergravity Models of Inflation, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.085038
[24] Kallosh, Renata; Linde, Andrei; Roest, Diederik, Superconformal Inflationary α-Attractors, JHEP, 11, 198 (2013) · Zbl 1342.83485 · doi:10.1007/JHEP11(2013)198
[25] Martin, Jerome; Ringeval, Christophe; Vennin, Vincent, Encyclopædia Inflationaris, Phys. Dark Univ., 5-6, 75-235 (2014) · doi:10.1016/j.dark.2014.01.003
[26] Cecotti, Sergio; Kallosh, Renata, Cosmological Attractor Models and Higher Curvature Supergravity, JHEP, 05, 114 (2014) · Zbl 1333.83215 · doi:10.1007/JHEP05(2014)114
[27] Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik, Unity of Cosmological Inflation Attractors, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.141302
[28] Kallosh, Renata; Linde, Andrei, Escher in the Sky, Comptes Rendus Physique, 16, 914-927 (2015) · doi:10.1016/j.crhy.2015.07.004
[29] Kallosh, Renata; Linde, Andrei, B-mode Targets, Phys. Lett. B, 798 (2019) · doi:10.1016/j.physletb.2019.134970
[30] Kallosh, Renata; Linde, Andrei, CMB targets after the latest Planck data release, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.123523
[31] Kallosh, Renata; Linde, Andrei, BICEP/Keck and cosmological attractors, JCAP, 12 (2021) · doi:10.1088/1475-7516/2021/12/008
[32] Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham, Inflationary paradigm in trouble after Planck2013, Phys. Lett. B, 723, 261-266 (2013) · doi:10.1016/j.physletb.2013.05.023
[33] Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori, Inflationary paradigm after Planck 2013, Phys. Lett. B, 733, 112-119 (2014) · doi:10.1016/j.physletb.2014.03.020
[34] Linde, Andrei, Inflationary Cosmology after Planck 2013, 231-316 (2015) · Zbl 1326.83008
[35] Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham, Inflationary schism, Phys. Lett. B, 736, 142-146 (2014) · doi:10.1016/j.physletb.2014.07.012
[36] Borde, Arvind; Vilenkin, Alexander, Eternal inflation and the initial singularity, Phys. Rev. Lett., 72, 3305-3309 (1994) · doi:10.1103/PhysRevLett.72.3305
[37] Borde, Arvind; Vilenkin, Alexander, Violations of the weak energy condition in inflating space-times, Phys. Rev. D, 56, 717-723 (1997) · doi:10.1103/PhysRevD.56.717
[38] Aguirre, Anthony; Gratton, Steven, Steady state eternal inflation, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.083507
[39] Aguirre, Anthony; Gratton, Steven, Inflation without a beginning: A Null boundary proposal, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.083515
[40] Aguirre, Anthony, Eternal Inflation, past and future (2007)
[41] Vilenkin, Alexander, Arrows of time and the beginning of the universe, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.043516
[42] Bauer, Florian; Demir, Durmus A., Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B, 665, 222-226 (2008) · doi:10.1016/j.physletb.2008.06.014
[43] Guendelman, E. I.; Kaganovich, A. B., Dynamical measure and field theory models free of the cosmological constant problem, Phys. Rev. D, 60 (1999) · doi:10.1103/PhysRevD.60.065004
[44] Guendelman, E. I.; Kaganovich, A. B., From inflation to a zero cosmological constant phase without fine tuning, Phys. Rev. D, 57, 7200-7203 (1998) · doi:10.1103/PhysRevD.57.7200
[45] Kaganovich, A. B., Field theory model giving rise to “quintessential inflation” without the cosmological constant and other fine tuning problems, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.025022
[46] Guendelman, E. I.; Kaganovich, A. B., Exotic low density fermion states in the two measures field theory: Neutrino dark energy, Int. J. Mod. Phys. A, 21, 4373-4406 (2006) · Zbl 1112.83059 · doi:10.1142/S0217751X06032538
[47] Guendelman, E. I.; Kaganovich, A. B., Fine Tuning Free Paradigm of Two Measures Theory: K-Essence, Absence of Initial Singularity of the Curvature and Inflation with Graceful Exit to Zero Cosmological Constant State, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.083505
[48] Guendelman, E. I.; Kaganovich, A. B., Transition to Zero Cosmological Constant and Phantom Dark Energy as Solutions Involving Change of Orientation of Space-Time Manifold, Class. Quant. Grav., 25 (2008) · Zbl 1155.83366 · doi:10.1088/0264-9381/25/23/235015
[49] Guendelman, E. I.; Kaganovich, A. B., Absence of the Fifth Force Problem in a Model with Spontaneously Broken Dilatation Symmetry, Annals Phys., 323, 866-882 (2008) · Zbl 1134.81049 · doi:10.1016/j.aop.2007.09.003
[50] del Campo, Sergio; Guendelman, Eduardo I.; Kaganovich, Alexander B.; Herrera, Ramon; Labrana, Pedro, Emergent Universe from Scale Invariant Two Measures Theory, Phys. Lett. B, 699, 211-216 (2011) · doi:10.1016/j.physletb.2011.03.061
[51] Guendelman, E. I.; Kaganovich, A. B., Neutrino generated dynamical dark energy with no dark energy field, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.044021
[52] Guendelman, Eduardo I.; Kaganovich, Alexander; Nissimov, Emil; Pacheva, Svetlana, Einstein-Rosen “Bridge” Needs Lightlike Brane Source, Phys. Lett. B, 681, 457-462 (2009) · doi:10.1016/j.physletb.2009.10.062
[53] Kallosh, Renata; Linde, Andrei; Roest, Diederik, Universal Attractor for Inflation at Strong Coupling, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.011303
[54] Kallosh, Renata; Linde, Andrei, Non-minimal Inflationary Attractors, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/033
[55] Bensity, David; Guendelman, Eduardo I.; Kaganovich, Alexander; Nissimov, Emil; Pacheva, Svetlana, Non-canonical volume-form formulation of modified gravity theories and cosmology, Eur. Phys. J. Plus, 136, 46 (2021) · doi:10.1140/epjp/s13360-020-01048-6
[56] Benisty, David; Guendelman, Eduardo I.; Nissimov, Emil; Pacheva, Svetlana, Dynamically generated inflationary two-field potential via non-Riemannian volume forms, Nucl. Phys. B, 951 (2020) · Zbl 1472.83072 · doi:10.1016/j.nuclphysb.2019.114907
[57] Guendelman, Eduardo; Herrera, Ramón; Benisty, David, Unifying inflation with early and late dark energy with multiple fields: Spontaneously broken scale invariant two measures theory, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.124035
[58] Guendelman, Eduardo; Herrera, Ramon, Unification: Emergent universe followed by inflation and dark epochs from multi-field theory (2023)
[59] Ellis, George F. R.; Maartens, Roy, The emergent universe: Inflationary cosmology with no singularity, Class. Quant. Grav., 21, 223-232 (2004) · Zbl 1061.83071 · doi:10.1088/0264-9381/21/1/015
[60] Barrow, John D.; Ellis, George F. R.; Maartens, Roy; Tsagas, Christos G., On the stability of the Einstein static universe, Class. Quant. Grav., 20, L155-L164 (2003) · Zbl 1026.83073 · doi:10.1088/0264-9381/20/11/102
[61] Wu, Puxun; Yu, Hong Wei, Emergent universe from the Hořava-Lifshitz gravity, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.103522
[62] Graham, Peter W.; Horn, Bart; Kachru, Shamit; Rajendran, Surjeet; Torroba, Gonzalo, A Simple Harmonic Universe, JHEP, 02, 029 (2014) · Zbl 1333.83143 · doi:10.1007/JHEP02(2014)029
[63] Mithani, Audrey; Vilenkin, Alexander, Did the universe have a beginning? (2012)
[64] Lesnefsky, J. E.; Easson, D. A.; Davies, P. C. W., Past-completeness of inflationary spacetimes, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.044024
[65] Chiba, Takeshi; Okabe, Takahiro; Yamaguchi, Masahide, Kinetically driven quintessence, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.023511
[66] Armendariz-Picon, C.; Mukhanov, Viatcheslav F.; Steinhardt, Paul J., A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett., 85, 4438-4441 (2000) · doi:10.1103/PhysRevLett.85.4438
[67] Armendariz-Picon, C.; Mukhanov, Viatcheslav F.; Steinhardt, Paul J., Essentials of k essence, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.103510
[68] Chiba, Takeshi, Tracking K-essence, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.063514
[69] Erickson, Joel K.; Caldwell, R. R.; Steinhardt, Paul J.; Armendariz-Picon, C.; Mukhanov, Viatcheslav F., Measuring the speed of sound of quintessence, Phys. Rev. Lett., 88 (2002) · doi:10.1103/PhysRevLett.88.121301
[70] John M. Lee, Introduction to Smooth Manifolds, Second Edition, Springer Science+Business Media New York (2012) []. · Zbl 1258.53002 · doi:10.1007/978-1-4419-9982-5
[71] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press (1973) []. · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.