×

Robustness of slow contraction to cosmic initial conditions. (English) Zbl 1492.83097


MSC:

83E05 Geometrodynamics and the holographic principle
58J47 Propagation of singularities; initial value problems on manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35B41 Attractors
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

References:

[1] L. Andersson and V. Moncrief, 2003 Elliptic hyperbolic systems and the Einstein equations, https://doi.org/10.1007/s00023-003-0120-1 Annales Henri Poincaré4 1 [gr-qc/0110111] · Zbl 1028.83005 · doi:10.1007/s00023-003-0120-1
[2] R.L. Arnowitt, S. Deser and C.W. Misner, 1959 Dynamical structure and definition of energy in general relativity, https://doi.org/10.1103/PhysRev.116.1322 Phys. Rev.1161322 · Zbl 0092.20704 · doi:10.1103/PhysRev.116.1322
[3] J.M. Bardeen, 1980 Gauge invariant cosmological perturbations, https://doi.org/10.1103/PhysRevD.22.1882 Phys. Rev. D22 1882 · doi:10.1103/PhysRevD.22.1882
[4] J.M. Bardeen, O. Sarbach and L.T. Buchman, 2011 Tetrad formalism for numerical relativity on conformally compactified constant mean curvature hypersurfaces, https://doi.org/10.1103/PhysRevD.83.104045 Phys. Rev. D83 104045 [1101.5479] · doi:10.1103/PhysRevD.83.104045
[5] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, 1983 Spontaneous creation of almost scale-free density perturbations in an inflationary universe, https://doi.org/10.1103/PhysRevD.28.679 Phys. Rev. D28 679 · doi:10.1103/PhysRevD.28.679
[6] V.A. Belinsky, I.M. Khalatnikov and E.M. Lifshitz, 1970 Oscillatory approach to a singular point in the relativistic cosmology, https://doi.org/10.1080/00018737000101171 Adv. Phys.19 525 · doi:10.1080/00018737000101171
[7] L.T. Buchman and J.M. Bardeen, 2003 A hyperbolic tetrad formulation of the Einstein equations for numerical relativity, https://doi.org/10.1103/PhysRevD.67.084017 Phys. Rev. D67 084017 [Erratum ibid 72 (2005) 049903] [gr-qc/0301072] · doi:10.1103/PhysRevD.67.084017
[8] W.G. Cook, I.A. Glushchenko, A. Ijjas, F. Pretorius and P.J. Steinhardt, Supersmoothing through slow contraction, [2006.01172] · Zbl 1473.83088
[9] J. Ehlers, 1961 Beiträge zur relativistischen Mechanik kontinuierlicher Medien (in German), Mainz Akad. Wissensch. Math. Naturwissen. Kl.11 792 · Zbl 0116.21501
[10] G.F.R. Ellis, 1967 Dynamics of pressure free matter in general relativity, https://doi.org/10.1063/1.1705331 J. Math. Phys.81171 · doi:10.1063/1.1705331
[11] F.B. Estabrook and H.D. Wahlquist, 1964 Dyadic analysis of space-time congruences, https://doi.org/10.1063/1.1931200 J. Math. Phys.5 1629 · Zbl 0129.41003 · doi:10.1063/1.1931200
[12] F.B. Estabrook, R. Robinson and H.D. Wahlquist, 1997 Hyperbolic equations for vacuum gravity using special orthonormal frames, https://doi.org/10.1088/0264-9381/14/5/025 Class. Quant. Grav.14 1237 [gr-qc/9703072] · Zbl 0873.53058 · doi:10.1088/0264-9381/14/5/025
[13] D. Garfinkle, W.C. Lim, F. Pretorius and P.J. Steinhardt, 2008 Evolution to a smooth universe in an ekpyrotic contracting phase with w > 1, https://doi.org/10.1103/PhysRevD.78.083537 Phys. Rev. D78 083537 [0808.0542] · doi:10.1103/PhysRevD.78.083537
[14] U.H. Gerlach and U.K. Sengupta, 1979 Gauge invariant perturbations on most general spherically symmetric space-times, https://doi.org/10.1103/PhysRevD.19.2268 Phys. Rev. D19 2268 · doi:10.1103/PhysRevD.19.2268
[15] R. Geroch, 2004 Gauge, diffeomorphisms, initial-value formulation, etc., in The Einstein equations and the large scale behavior of gravitational fields, https://doi.org/10.1007/978-3-0348-7953-813 Birkhäuser, Basel, Switzerland , pg. 441 · Zbl 1073.83013 · doi:10.1007/978-3-0348-7953-8_13
[16] A.H. Guth, 2007 Eternal inflation and its implications, https://doi.org/10.1088/1751-8113/40/25/S25 J. Phys. A40 6811 [hep-th/0702178] · doi:10.1088/1751-8113/40/25/S25
[17] A. Ijjas and P.J. Steinhardt, 2018 Bouncing cosmology made simple, https://doi.org/10.1088/1361-6382/aac482 Class. Quant. Grav.35 135004 [1803.01961] · Zbl 1409.83236 · doi:10.1088/1361-6382/aac482
[18] A. Ijjas and P.J. Steinhardt, 2019 A new kind of cyclic universe, https://doi.org/10.1016/j.physletb.2019.06.056 Phys. Lett. B795 666 [1904.08022] · doi:10.1016/j.physletb.2019.06.056
[19] P. Jordan, J. Ehlers and W. Kundt, 2009 Republication of: exact solutions of the field equations of the general theory of relativity, https://doi.org/10.1007/s10714-009-0869-8 Gen. Relativ. Grav.41 2191 · Zbl 1179.83022 · doi:10.1007/s10714-009-0869-8
[20] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, 2001 The ekpyrotic universe: colliding branes and the origin of the hot big bang, https://doi.org/10.1103/PhysRevD.64.123522 Phys. Rev. D64 123522 [hep-th/0103239] · doi:10.1103/PhysRevD.64.123522
[21] W. Kundt, 2003 “Golden oldie”: the spatially homogeneous cosmological models, https://doi.org/10.1023/A:1022334319617 Gen. Relativ. Grav.35 491 · Zbl 1016.83005 · doi:10.1023/A:1022334319617
[22] E. Lifshitz, 1946 Republication of: on the gravitational stability of the expanding universe J. Phys. (U.S.S.R.)10 116 · Zbl 0060.44507
[23] E. Lifshitz, 2017 https://doi.org/10.1007/s10714-016-2165-8 Gen. Relativ. Grav.49 18 · Zbl 1358.83100 · doi:10.1007/s10714-016-2165-8
[24] V.F. Mukhanov, 1988 Quantum theory of gauge invariant cosmological perturbations Sov Phys. JETP67 1297
[25] V.F. Mukhanov, 1988 Zh. Eksp. Teor. Fiz.94N71
[26] F. Pretorius, 2005 Numerical relativity using a generalized harmonic decomposition, https://doi.org/10.1088/0264-9381/22/2/014 Class. Quant. Grav.22 425 [gr-qc/0407110] · Zbl 1067.83001 · doi:10.1088/0264-9381/22/2/014
[27] F. Pretorius, 2006 Simulation of binary black hole spacetimes with a harmonic evolution scheme, https://doi.org/10.1088/0264-9381/23/16/S13 Class. Quant. Grav.23 S529 [gr-qc/0602115] · Zbl 1191.83026 · doi:10.1088/0264-9381/23/16/S13
[28] P.J. Steinhardt and N. Turok, 2002 Cosmic evolution in a cyclic universe, https://doi.org/10.1103/PhysRevD.65.126003 Phys. Rev. D65 126003 [hep-th/0111098] · doi:10.1103/PhysRevD.65.126003
[29] P.J. Steinhardt, 1983 Natural inflation, in The very early universe, G.W. Gibbons, S. Hawking and S. Siklos eds., Cambridge University Press, Cambridge, U.K. , pg. 251
[30] H. van Elst and C. Uggla, 1997 General relativistic (1+3) orthonormal frame approach revisited, https://doi.org/10.1088/0264-9381/14/9/021 Class. Quant. Grav.14 2673 [gr-qc/9603026] · Zbl 0888.53058
[31] H. van Elst, C. Uggla and J. Wainwright, 2002 Dynamical systems approach to G_2 cosmology, https://doi.org/10.1088/0264-9381/19/1/304 Class. Quant. Grav.19 51 [gr-qc/0107041] · Zbl 1008.83034 · doi:10.1088/0264-9381/19/1/304
[32] A. Vilenkin, 1983 The birth of inflationary universes, https://doi.org/10.1103/PhysRevD.27.2848 Phys. Rev. D27 2848 · doi:10.1103/PhysRevD.27.2848
[33] J.W. York, 1971 Gravitational degrees of freedom and the initial-value problem, https://doi.org/10.1103/PhysRevLett.26.1656 Phys. Rev. Lett.26 1656 · doi:10.1103/PhysRevLett.26.1656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.