×

Multi-field inflation from single-field models. (English) Zbl 1492.83079


MSC:

83E05 Geometrodynamics and the holographic principle
58J47 Propagation of singularities; initial value problems on manifolds
83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
62H20 Measures of association (correlation, canonical correlation, etc.)
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory

References:

[1] Planck Collaboration; Ade, P. A. R., Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys., 571, A22 (2014) · doi:10.1051/0004-6361/201321569
[2] Starobinsky, Alexei A.; Khalatnikov, I. M.; Mineev, V. P., A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[3] Isidori, Gino; Rychkov, Vyacheslav S.; Strumia, Alessandro; Tetradis, Nikolaos, Gravitational corrections to standard model vacuum decay, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.025034
[4] Fairbairn, Malcolm; Grothaus, Philipp; Hogan, Robert, The Problem with False Vacuum Higgs Inflation, JCAP, 06 (2014) · doi:10.1088/1475-7516/2014/06/039
[5] Hamada, Yuta; Kawai, Hikaru; Oda, Kin-ya, Minimal Higgs inflation, Prog. Theor. Exp. Phys., 2014 (2014) · doi:10.1093/ptep/ptt116
[6] Bezrukov, Fedor L.; Shaposhnikov, Mikhail, The Standard Model Higgs boson as the inflaton, Phys. Lett. B, 659, 703-706 (2008) · doi:10.1016/j.physletb.2007.11.072
[7] Steinwachs, Christian F.; De Bianchi, Silvia; Kiefer, Claus, Higgs field in cosmology, Fundam. Theor. Phys., 199, 253-287 (2020) · doi:10.1007/978-3-030-51197-5_11
[8] Bezrukov, F.; Shaposhnikov, M., Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP, 07, 089 (2009) · doi:10.1088/1126-6708/2009/07/089
[9] Burgess, C. P.; Lee, Hyun Min; Trott, Michael, Comment on Higgs Inflation and Naturalness, JHEP, 07, 007 (2010) · Zbl 1290.81198 · doi:10.1007/JHEP07(2010)007
[10] Starobinsky, Alexei A., Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B, 117, 175-178 (1982) · doi:10.1016/0370-2693(82)90541-X
[11] Starobinsky, Alexei A., STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE, Lect. Notes Phys., 246, 107-126 (1986) · doi:10.1007/3-540-16452-9_6
[12] Nambu, Yasusada; Sasaki, Misao, Stochastic Stage of an Inflationary Universe Model, Phys. Lett. B, 205, 441-446 (1988) · doi:10.1016/0370-2693(88)90974-4
[13] P.J. Steinhardt, Natural inflation, in The Very Early Universe, Cambridge University Press, Cambridge U.K. (1983), pp. 251-266.
[14] Vilenkin, Alexander, The Birth of Inflationary Universes, Phys. Rev. D, 27, 2848 (1983) · doi:10.1103/PhysRevD.27.2848
[15] Linde, Andrei D., Eternally Existing Selfreproducing Chaotic Inflationary Universe, Phys. Lett. B, 175, 395-400 (1986) · doi:10.1016/0370-2693(86)90611-8
[16] Vilenkin, Alexander, Quantum Fluctuations in the New Inflationary Universe, Nucl. Phys. B, 226, 527-546 (1983) · doi:10.1016/0550-3213(83)90208-0
[17] Calzetta, Esteban; Hu, B. L., Noise and fluctuations in semiclassical gravity, Phys. Rev. D, 49, 6636-6655 (1994) · doi:10.1103/PhysRevD.49.6636
[18] Morikawa, Masahiro, Dissipation and Fluctuation of Quantum Fields in Expanding Universes, Phys. Rev. D, 42, 1027-1034 (1990) · doi:10.1103/PhysRevD.42.1027
[19] Perreault Levasseur, Laurence; McDonough, Evan, Backreaction and Stochastic Effects in Single Field Inflation, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.063513
[20] Bojowald, Martin; Brahma, Suddhasattwa; Crowe, Sean; Ding, Ding; McCracken, Joseph, Quantum Higgs Inflation, Phys. Lett. B, 816 (2021) · Zbl 07408666 · doi:10.1016/j.physletb.2021.136193
[21] Jackiw, R.; Kerman, A., Time Dependent Variational Principle and the Effective Action, Phys. Lett. A, 71, 158-162 (1979) · doi:10.1016/0375-9601(79)90151-8
[22] F. Arickx, J. Broeckhove, W. Coene and P. van Leuven, Gaussian wave-packet dynamics, Int. J. Quant. Chem. Quant. Chem. Symp.20 (1986) 471. · doi:10.1002/qua.560300741
[23] R.A. Jalabert and H.M. Pastawski, Environment-independent decoherence rate in classically chaotic systems, Phys. Rev. Lett.86 (2001) 2490. · doi:10.1103/PhysRevLett.86.2490
[24] O. Prezhdo, Quantized Hamiltonian dynamics, Theor. Chem. Acc.116 (2006) 206. · doi:10.1007/s00214-005-0032-x
[25] Vachaspati, Tanmay; Zahariade, George, Classical-quantum correspondence and backreaction, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.065002
[26] Mukhopadhyay, Mainak; Vachaspati, Tanmay, Rolling classical scalar field in a linear potential coupled to a quantum field, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.096018
[27] Baytas, Bekir; Bojowald, Martin; Crowe, Sean, Faithful realizations of semiclassical truncations, Annals Phys., 420 (2020) · Zbl 1451.81394 · doi:10.1016/j.aop.2020.168247
[28] Baytaş, Bekir; Bojowald, Martin; Crowe, Sean, Effective potentials from semiclassical truncations, Phys. Rev. A, 99 (2019) · Zbl 1451.81394 · doi:10.1103/PhysRevA.99.042114
[29] Bojowald, Martin; Skirzewski, Aureliano, Effective equations of motion for quantum systems, Rev. Math. Phys., 18, 713-746 (2006) · Zbl 1124.82010 · doi:10.1142/S0129055X06002772
[30] Bojowald, Martin; Skirzewski, Aureliano; Borowiec, Andrzej, Quantum gravity and higher curvature actions, eConf, C0602061, 03 (2006) · Zbl 1168.83308 · doi:10.1142/S0219887807001941
[31] Bojowald, Martin; Brizuela, David; Hernandez, Hector H.; Koop, Michael J.; Morales-Técotl, Hugo A., High-order quantum back-reaction and quantum cosmology with a positive cosmological constant, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043514
[32] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer (1997).
[33] A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative algebras, in Berkeley Mathematics Lectures10, American Mathematical Society, Providence RI U.S.A. (1999). · Zbl 1135.58300
[34] O. Prezhdo and Y.V. Pereverzev, Quantized Hamilton dynamics, J. Chem. Phys.113 (2000) 6557. · doi:10.1063/1.1290288
[35] C. Kühn, Moment Closure — A Brief Review, in Understanding Complex Systems, Springer, Cham Switzerland (2016), pp. 253-271. · doi:10.1007/978-3-319-28028-8_13
[36] Bojowald, Martin; Brahma, Suddhasattwa, Minisuperspace models as infrared contributions, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.125001
[37] Bojowald, Martin, The BKL scenario, infrared renormalization, and quantum cosmology, JCAP, 01 (2019) · Zbl 1542.83003 · doi:10.1088/1475-7516/2019/01/026
[38] Coleman, Sidney R.; Weinberg, Erick J., Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D, 7, 1888-1910 (1973) · doi:10.1103/PhysRevD.7.1888
[39] Bojowald, Martin; Brahma, Suddhasattwa, Canonical derivation of effective potentials (2014) · Zbl 1342.83078
[40] Bojowald, Martin; Brahma, Suddhasattwa; Nelson, Elliot, Higher time derivatives in effective equations of canonical quantum systems, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.105004
[41] F. Cametti, G. Jona-Lasinio, C. Presilla and F. Toninelli, Comparison between quantum and classical dynamics in the effective action formalism, in proceedings of the International School of Physics “Enrico Fermi”, Course CXLIII, Varenna, Italy, 20-30 July 1999, IOS Press, Amsterdam The Netherlads (2000), pp. 431-448 [9910065] [Inspire]. · Zbl 1044.81562
[42] Linde, Andrei D., Hybrid inflation, Phys. Rev. D, 49, 748-754 (1994) · doi:10.1103/PhysRevD.49.748
[43] Martin, Jerome; Brandenberger, Robert H., The TransPlanckian problem of inflationary cosmology, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.123501
[44] Brandenberger, Robert H.; Martin, Jerome, The Robustness of inflation to changes in superPlanck scale physics, Mod. Phys. Lett. A, 16, 999-1006 (2001) · Zbl 1138.83379 · doi:10.1142/S0217732301004170
[45] Niemeyer, Jens C., Inflation with a Planck scale frequency cutoff, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.123502
[46] Kodama, Hideo; Kohri, Kazunori; Nakayama, Kazunori, On the waterfall behavior in hybrid inflation, Prog. Theor. Phys., 126, 331-350 (2011) · Zbl 1230.83108 · doi:10.1143/PTP.126.331
[47] Clesse, Sebastien, Hybrid inflation along waterfall trajectories, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.063518
[48] Stewart, Ewan D., Mutated hybrid inflation, Phys. Lett. B, 345, 414-415 (1995) · doi:10.1016/0370-2693(94)01646-T
[49] Lyth, David H.; Stewart, Ewan D., More varieties of hybrid inflation, Phys. Rev. D, 54, 7186-7190 (1996) · doi:10.1103/PhysRevD.54.7186
[50] Kohri, Kazunori; Lin, Chia-Min; Lyth, David H., More hilltop inflation models, JCAP, 12 (2007) · doi:10.1088/1475-7516/2007/12/004
[51] Jeannerot, Rachel; Postma, Marieke, Confronting hybrid inflation in supergravity with CMB data, JHEP, 05, 071 (2005) · doi:10.1088/1126-6708/2005/05/071
[52] Vafa, Cumrun, The String landscape and the swampland (2005) · Zbl 1082.81071
[53] Palti, Eran, The Swampland: Introduction and Review, Fortsch. Phys., 67 (2019) · Zbl 1427.81108 · doi:10.1002/prop.201900037
[54] Ooguri, Hirosi; Palti, Eran; Shiu, Gary; Vafa, Cumrun, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B, 788, 180-184 (2019) · doi:10.1016/j.physletb.2018.11.018
[55] Garg, Sumit K.; Krishnan, Chethan, Bounds on Slow Roll and the de Sitter Swampland, JHEP, 11, 075 (2019) · doi:10.1007/JHEP11(2019)075
[56] Brahma, Suddhasattwa; Shandera, Sarah, Stochastic eternal inflation is in the swampland, JHEP, 11, 016 (2019) · Zbl 1429.83105 · doi:10.1007/JHEP11(2019)016
[57] Rudelius, Tom, Conditions for (No) Eternal Inflation, JCAP, 08 (2019) · Zbl 1541.83186 · doi:10.1088/1475-7516/2019/08/009
[58] Bedroya, Alek; Vafa, Cumrun, Trans-Planckian Censorship and the Swampland, JHEP, 09, 123 (2020) · Zbl 1454.85006 · doi:10.1007/JHEP09(2020)123
[59] Bedroya, Alek; Brandenberger, Robert; Loverde, Marilena; Vafa, Cumrun, Trans-Planckian Censorship and Inflationary Cosmology, Phys. Rev. D, 101 (2020) · Zbl 1454.85006 · doi:10.1103/PhysRevD.101.103502
[60] Brahma, Suddhasattwa; Brandenberger, Robert; Yeom, Dong-Han, Swampland, Trans-Planckian Censorship and Fine-Tuning Problem for Inflation: Tunnelling Wavefunction to the Rescue, JCAP, 10 (2020) · Zbl 1494.83007 · doi:10.1088/1475-7516/2020/10/037
[61] Kaloper, Nemanja; König, Morgane; Lawrence, Albion; Scargill, James H. C., On hybrid monodromy inflation — hic sunt dracones, JCAP, 03 (2021) · Zbl 1484.83137 · doi:10.1088/1475-7516/2021/03/024
[62] Lehners, Jean-Luc; Wilson-Ewing, Edward, Running of the scalar spectral index in bouncing cosmologies, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.