×

Maximum principle and propagation for intrinsicly regular solutions of differential inequalities structured on vector fields. (English) Zbl 1106.35149

The aim of this paper is to study the following differential inequality \[ Hu(z)= \sum^m_{i,j=1} a_{ij}(z) Z_i Z_j u(z)+ Z_0 u(z)\geq 0,\quad z\in\Omega\subset \mathbb{R}^N,\tag{1} \] where \((a_{ij})_{i,j}\) is positive semidefinite, \(Z_0,Z_1,\dots, Z_m\) are locally Lipschitz-continuous vector fields on the open set \(\Omega\) and \(u\) is a real-valued function which needs to be differentiable. The authors are interested in weak maximum principles and maximum propagation for functions \(u\) in an intrinsic class of regularity modelled on the fields \(Z_j\), say \(u\in \Gamma^2(\Omega)\), a somewhat minimal regularity class for which inequality (1) makes sense. By \(\Gamma^2(\Omega)\), that is \(u\in\Gamma^2(\Omega)\), the authors mean that \(u:\Omega\to \mathbb{R}\) is a continuous function with continuous Lie-derivatives along \(Z_1,\dots, Z_m\) up to the second-order and a continuous Lie-derivative along \(Z_0\).

MSC:

35R45 Partial differential inequalities and systems of partial differential inequalities
35B50 Maximum principles in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Amano, K., Maximum principles for degenerate elliptic-parabolic operators, Indiana Univ. Math. J., 29, 545-557 (1979) · Zbl 0423.35023
[2] Bardi, M.; Da Lio, F., Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. I: Convex operators, Nonlinear Anal., 44, 991-1006 (2001) · Zbl 1135.35342
[3] Birindelli, I.; Cutrì, A., A semi-linear problem for the Heisenberg Laplacian, Rend. Sem. Mat. Univ. Padova, 94, 137-153 (1995) · Zbl 0858.35040
[4] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., in press; A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc., in press · Zbl 1072.35011
[5] A. Bonfiglioli, F. Uguzzoni, Harnack inequality for non-divergence form operators on stratified groups, preprint; A. Bonfiglioli, F. Uguzzoni, Harnack inequality for non-divergence form operators on stratified groups, preprint · Zbl 1113.35032
[6] Bony, J.-M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19, 277-304 (1969) · Zbl 0176.09703
[7] Caffarelli, L. A.; Cabré, X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0834.35002
[8] Franchi, B.; Serapioni, R.; Serra Cassano, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Unione Mat. Ital. Ser. B, 11, 7, 83-117 (1997) · Zbl 0952.49010
[9] Friedman, A., Remarks on the maximum principle for parabolic equations and its applications, Pacific J. Math., 8, 201-211 (1958) · Zbl 0103.06403
[10] Friedrichs, K., The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc., 55, 132-151 (1944) · Zbl 0061.26201
[11] Garofalo, N.; Nhieu, D., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49, 1081-1144 (1996) · Zbl 0880.35032
[12] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224 (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0691.35001
[13] Hill, C. D., A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J., 20, 4, 213-229 (1970) · Zbl 0205.10402
[14] Hopf, E., A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc., 3, 791-793 (1952) · Zbl 0048.07802
[15] Kawohl, B.; Kutev, N., Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations, Arch. Math. (Basel), 70, 470-478 (1998) · Zbl 0907.35008
[16] E. Lanconelli, A. Pascucci, S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in: Nonlinear Problems in Mathematical Physics and Related Topics, II, in Honor of Professor O.A. Ladyzhenskaya, in: Internat. Math. Ser., vol. 2, in press; E. Lanconelli, A. Pascucci, S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in: Nonlinear Problems in Mathematical Physics and Related Topics, II, in Honor of Professor O.A. Ladyzhenskaya, in: Internat. Math. Ser., vol. 2, in press · Zbl 1032.35114
[17] Lanconelli, E.; Polidoro, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52, 29-63 (1994) · Zbl 0811.35018
[18] Lascialfari, F.; Montanari, A., Smooth regularity for solutions of the Levi Monge-Ampère equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 12, 115-123 (2001) · Zbl 1097.35061
[19] A. Montanari, E. Lanconelli, Strong comparison principle for symmetric functions in the eigenvalues of the Levi form, preprint; A. Montanari, E. Lanconelli, Strong comparison principle for symmetric functions in the eigenvalues of the Levi form, preprint
[20] Nirenberg, L., A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6, 167-177 (1953) · Zbl 0050.09601
[21] Oleinik, O. A., On properties of solutions of certain boundary problems for equations of elliptic type, Mat. Sb. (N.S.), 30, 695-702 (1952)
[22] Oleinik, O. A.; Radkevic, E. V., Second Order Equations with Nonnegative Characteristic Form (1973), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[23] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (1967), Prentice Hall: Prentice Hall Englewood Cliffs · Zbl 0153.13602
[24] Redheffer, R. M., The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J., 21, 227-248 (1971) · Zbl 0235.35007
[25] Sperb, R. P., Maximum Principles and Their Applications (1981), Academic Press: Academic Press New York · Zbl 0454.35001
[26] Stroock, D. W.; Varadhan, S. R.S., On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math., 25, 651-713 (1972) · Zbl 0344.35041
[27] Taira, K., Diffusion Processes and Partial Differential Equations (1988), Academic Press: Academic Press London · Zbl 0652.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.