×

Projective-geometric aspects of homogeneous third-order Hamiltonian operators. (English) Zbl 1321.37071

The authors investigate homogeneous third-order Hamiltonian operators \(P\) of differential-geometric type. The operator \(P\) is called Hamiltonian when it is formally skew-adjoint, that is, \(P^{*}=-P\), and its Schouten bracket vanishes, that is, \([P,P]=0\). The presentation makes extensive use of local coordinates.
Three main examples of integrable systems possessing Hamiltonian structure of differential-geometric type are recalled. They are integrable PDEs of Monge-Ampère type that come from the theory of the Witten-Dijkgraaf-Verlinde-Verlinde equation of 2-dimensional topological field theory.
Based on the correspondence with quadratic line complexes, a complete list of homogeneous third-order Hamiltonian operators \(P\) of differential-geometric type with \(n\leq3\) components is obtained. The classification is based on the relation with the Monge metrics of quadratic line complexes. The invariance under the full projective group is proven.
Some of the computations were performed by using the software package CDIFF of the REDUCE computer algebra system.

MSC:

37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
53A20 Projective differential geometry

Software:

REDUCE; CDIFF

References:

[1] Dubrovin, B. A.; Novikov, S. P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method, Sov. Math. Dokl., 27, 3, 665-669 (1983) · Zbl 0553.35011
[2] Dubrovin, B. A.; Novikov, S. P., Poisson brackets of hydrodynamic type, Sov. Math. Dokl., 30, 3, 651-2654 (1984) · Zbl 0591.58012
[3] Potemin, G. V., On Poisson brackets of differential-geometric type, Sov. Math. Dokl., 33, 30-33 (1986) · Zbl 0606.53010
[4] Doyle, P. W., Differential geometric Poisson bivectors in one space variable, J. Math. Phys., 34, 4, 1314-1338 (1993) · Zbl 0778.58022
[5] Mokhov, O. I., Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems, Russian Math. Surveys, 53, 3, 515-622 (1998) · Zbl 0937.53001
[7] Potemin, G. V., Some aspects of differential geometry and algebraic geometry in the theory of solitons (1991), Moscow, Moscow State University, 99 pages
[8] Potemin, G. V., On third-order Poisson brackets of differential geometry, Russian Math. Surveys, 52, 617-618 (1997) · Zbl 0935.53036
[9] Balandin, A. V.; Potemin, G. V., On non-degenerate differential-geometric Poisson brackets of third order, Russian Math. Surveys, 56, 5, 976-977 (2001) · Zbl 1049.37516
[10] Novikov, S. P., Geometry of conservative systems of hydrodynamic type. The averaging method for field-theoretic systems, Uspekhi Mat. Nauk, 40, 4, 79-89 (1985) · Zbl 0603.76001
[11] Jessop, C. M., A Treatise on the Line Complex (1903), Cambridge University Press · JFM 34.0702.06
[14] Ferapontov, E. V.; Mokhov, O. I., Equations of associativity of two-dimensional topological field theory as integrable Hamiltonian nondiagonalisable systems of hydrodynamic type, Funct. Anal. Appl., 30, 3, 195-203 (1996) · Zbl 0873.35090
[15] Ferapontov, E. V.; Galvao, C. A.P.; Mokhov, O.; Nutku, Y., Bi-Hamiltonian structure of equations of associativity in 2-d topological field theory, Comm. Math. Phys., 186, 649-669 (1997) · Zbl 0885.58023
[17] Kalayci, J.; Nutku, Y., Bi-Hamiltonian structure of a WDVV equation in 2d topological field theory, Phys. Lett. A, 227, 177-182 (1997) · Zbl 0962.58501
[18] Kalayci, J.; Nutku, Y., Alternative bi-Hamiltonian structures for WDVV equations of associativity, J. Phys. A, 31, 723-734 (1998) · Zbl 0947.37041
[19] Dolgachev, I. V., Classical Algebraic Geometry. A Modern View (2012), Cambridge University Press: Cambridge University Press Cambridge, 639 pp · Zbl 1252.14001
[20] Ferapontov, E. V., Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications, Amer. Math. Soc. Transl., 170, 2, 33-58 (1995) · Zbl 0845.58029
[21] Ferapontov, E. V.; Pavlov, M. V., Reciprocal transformations of Hamiltonian operators of hydrodynamic type: non-local Hamiltonian formalism for linearly degenerate systems, J. Math. Phys., 44, 3, 1150-1172 (2003) · Zbl 1061.37046
[22] Abenda, S., Reciprocal transformations and local Hamiltonian structures of hydrodynamic-type systems, J. Phys. A, 42, 9, 095208 (2009), 20 pp · Zbl 1158.37024
[23] Mokhov, O. I., Local third-order Poisson brackets, Russian Math. Surveys, 40, 5, 233-234 (1985) · Zbl 0604.58029
[24] Mokhov, O. I., Hamiltonian differential operators and contact geometry, Funct. Anal. Appl., 21, 3, 217-223 (1987) · Zbl 0635.58006
[25] Astashov, A. M.; Vinogradov, A. M., On the structure of Hamiltonian operators in field theory, J. Geom. Phys., 3, 2, 263-287 (1986) · Zbl 0611.58051
[26] Ferapontov, E. V.; Moss, J., Linearly degenerate PDEs and quadratic line complexes, Comm. Anal. Geom. (2014), in press, arXiv:1204.2777 · Zbl 1420.35017
[27] Avritzer, D.; Lange, H., Moduli spaces of quadratic complexes and their singular surfaces, Geom. Dedicata, 127, 177-197 (2007) · Zbl 1127.14015
[28] Kummer, E., Über die Flächen vierten Grades mit sechzehn singulären Punkten, (Monatsberichte der Koniglichen Preusischen Akademie der Wissenschaften zu Berlin (1864)), 246-260, see also Collected papers, Volume II: Function theory, geometry and miscellaneous, Springer-Verlag, Berlin, New York (1975) 877 pp · Zbl 0063.10001
[29] Segre, B., Studio dei complessi quadratici di rette di \(S_4\), Atti Ist. Veneto, 88, 595-649 (1929) · JFM 55.1012.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.