×

Distributive and multiplication modules. (English) Zbl 1228.13015

In a paper by A. Barnard [J. Algebra 71, 174–178 (1981; Zbl 0468.13011)], \(M\) is called a multiplication module over a commutative ring \(R\) with identity means here that every submodule has the form \(IM\) for some ideal \(I\) of \(R\). An \(R\)-module \(M\) is said to be a distributive module if for all submodules \(N\), \(K\), and \(L\) of \(M\) we have, \(N+(K\cap L)=(N+K)\cap (N+L)\).
In the paper under review the authors show that every distributive module satisfies the radical formula. Also they provide a proof of the prime avoidance theorem for distributive modules. In addition, they study the question when a multiplication module becomes flat.

MSC:

13C10 Projective and free modules and ideals in commutative rings
13C11 Injective and flat modules and ideals in commutative rings
13C13 Other special types of modules and ideals in commutative rings

Citations:

Zbl 0468.13011
Full Text: DOI

References:

[1] Abu-Saymeh S.: On dimensions of finitely generated modules. Comm. Algebra 23(3), 1131–1144 (1995) · Zbl 0833.13004 · doi:10.1080/00927879508825270
[2] Ali M.M., Smith D.J.: Projective, flat and multiplication modules. New Zealand J. Math 31(2), 115–129 (2002) · Zbl 1085.13004
[3] Anderson D.D., Al-Shaniafi Y.: Multiplication modules and the ideal {\(\theta\)}. Comm. Algebra 30(7), 3383–3390 (2002) · Zbl 1016.13002 · doi:10.1081/AGB-120004493
[4] Auslander M., Goldman O.: Maximal orders. Trans. Amer. Math. Soc 97, 1–24 (1960) · Zbl 0117.02506 · doi:10.1090/S0002-9947-1960-0117252-7
[5] Azizi, A.: Weak multiplication modules. Czechoslovak Math. J. 53(128)(3), 529–534 (2003) · Zbl 1083.13502
[6] Barnard A.: Multiplication modules. J. Algebra 71(1), 174–178 (1981) · Zbl 0468.13011 · doi:10.1016/0021-8693(81)90112-5
[7] El-Bast Z.A., Smith P.F.: Multiplication modules. Comm. Algebra 16(4), 755–779 (1988) · Zbl 0642.13002 · doi:10.1080/00927878808823601
[8] Gaur A., Maloo A.K., Parkash A.: Prime submodules in multiplication modules. Int. J. Algebra 1(5-8), 375–380 (2007) · Zbl 1121.13012
[9] Lu C.P.: Unions of prime submodules. Houston J. Math 23(2), 203–213 (1997) · Zbl 0885.13004
[10] Matsumura H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989) · Zbl 0666.13002
[11] Naoum A.G.: Flat modules and multiplication modules. Period. Math. Hungar 21(4), 309–317 (1990) · Zbl 0739.13005 · doi:10.1007/BF02352695
[12] Sharif H., Sharifi Y., Namazi S.: Rings satisfying the radical formula. Acta Math. Hungar 71(1–2), 103–108 (1996) · Zbl 0890.13001 · doi:10.1007/BF00052198
[13] Smith W.W.: Projective ideals of finite type. Canad. J. Math 21, 1057–1061 (1969) · Zbl 0183.04001 · doi:10.4153/CJM-1969-116-7
[14] Stephenson W.: Modules whose lattice of submodules is distributive. Proc. London Math. Soc (3) 28, 291–310 (1974) · Zbl 0294.16003 · doi:10.1112/plms/s3-28.2.291
[15] Vasconcelos W.V.: On projective modules of finite rank. Proc. Amer. Math. Soc 22(2), 430–433 (1969) · Zbl 0176.31601 · doi:10.1090/S0002-9939-1969-0242807-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.