×

On stability of sampling-reconstruction models. (English) Zbl 1166.62300

Summary: A useful sampling-reconstruction model should be stable with respect to different kinds of small perturbations, regardless whether they result from jitter, measurement errors, or simply from a small change in the model assumptions. We prove this result for a large class of sampling models. We define different classes of perturbations and present a way of quantifying the robustness of a model with respect to them. We also use the theory of localized frames to study the dual frame method for recovering the original signal from its samples.

MSC:

62B99 Sufficiency and information
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
46N30 Applications of functional analysis in probability theory and statistics

References:

[1] Aldroubi, A.: Non-uniform average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal. 13, 151–161 (2002) · Zbl 1016.42022 · doi:10.1016/S1063-5203(02)00503-1
[2] Aldroubi, A., Krishtal, I., Baskakov, A.: Slanted matrices, Banach frames, and sampling. arxiv:0705.4304 (2007) · Zbl 1155.42007
[3] Aldroubi, A., Gröchenig, K.: Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier Anal. Appl. 6, 93–103 (2000) · Zbl 0964.42020 · doi:10.1007/BF02510120
[4] Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001) · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[5] Aldroubi, A., Krishtal, I.: Robustness of sampling and reconstruction and Beurling-Landau-type theorems for shift-invariant spaces. Appl. Comput. Harmon. Anal. 20, 250–260 (2006) · Zbl 1086.42017 · doi:10.1016/j.acha.2005.06.002
[6] Aldroubi, A., Leonetti, C.: Non-uniform sampling and reconstruction from sampling sets with unknown jitter. Sampl. Theory Signal Image Process. (2008, in press) · Zbl 1182.41016
[7] Atreas, N., Bagis, N., Karanikas, C.: The information loss error and the jitter error for regular sampling expansions. Sampl. Theory Signal Image Process. 1(3), 261–276 (2002) · Zbl 1052.94012
[8] Benedetto, J.J., Ferreira, P.J.S.G.: Modern Sampling Theory. Appl. Numer. Harmon. Anal., Birkhäuser Boston (2001) · Zbl 1017.94006
[9] Benedetto, J.J., Scott, S.: Frames, irregular sampling, and a wavelet auditory model. Nonuniform Sampling, Inf. Technol. Transm. Process. Storage, pp. 585–617. Kluwer/Plenum, New York (2001)
[10] Baskakov, A.G.: Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis. (Russian) Sibirsk. Mat. Zh. 38(1), 14–28 (1997); translation in Siberian Math. J. 38(1), 10–22 (1997)
[11] Chen, W., Itoh, S., Shiki, J.: On sampling in shift invariant spaces. IEEE Trans. Inform. Theory 48(10), 2802–2809 (2002) · Zbl 1062.94512 · doi:10.1109/TIT.2002.802646
[12] Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952) · Zbl 0049.32401 · doi:10.1090/S0002-9947-1952-0047179-6
[13] Feichtinger, H., Molter, U., Romero, J.L.: Pertubation techniques in irregular spline-type spaces. Int. J. Wavelets Multiresolut. Inf. Process 6(2), 249–277 (2008) · Zbl 1148.41007 · doi:10.1142/S0219691308002331
[14] Feichtinger, H.G.: Wiener amalgam over Euclidean spaces and some of their applications. In: Jarosz, K. (ed.) Proc. Conf. Function Spaces, Edwardsville, IL, USA, 1990. Lecture Notes in Pure and Appl. Math. vol. 136, pp. 107–121. CRC, Lille (1992)
[15] Feichtinger, H.G., Sun, W.: Stability of Gabor frames with arbitrary sampling points. Acta Math. Hungar. 113(3), 187–212 (2006) · Zbl 1121.42021 · doi:10.1007/s10474-006-0099-4
[16] Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10, 105–132 (2004) · Zbl 1055.42018 · doi:10.1007/s00041-004-8007-1
[17] Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc. 17, 1–18 (2004) · Zbl 1037.22012 · doi:10.1090/S0894-0347-03-00444-2
[18] Luo, S.: Error estimation for non-uniform sampling in shift invariant space. Appl. Anal. 86(4), 483–496 (2007) · Zbl 1135.94003 · doi:10.1080/00036810701259236
[19] Nashed, Z.M., Walter, G.G.: General sampling theorems for functions in reproducing kernel Hilbert spaces. Math. Control Signals Systems 4(4), 363–390 (1991) · Zbl 0734.46019 · doi:10.1007/BF02570568
[20] Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38, 1389–1422 (2006) · Zbl 1130.94009 · doi:10.1137/05063444X
[21] Sun, W., Zhou, X.: Reconstruction of functions in spline subspaces from local averages. Proc. Am. Math. Soc. 131(8), 2561–2571 (2003) · Zbl 1026.94004 · doi:10.1090/S0002-9939-03-07082-5
[22] Sun, W., Zhou, X.: Average sampling in shift invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl. 287(1), 279–295 (2003) · Zbl 1029.94009 · doi:10.1016/S0022-247X(03)00558-4
[23] Sun, W.: Sampling theorems for multivariate shift invariant subspaces. Sampl. Theory Signal Image Process. 4(1), 73–98 (2005) · Zbl 1137.94332
[24] Unser, M.: Sampling–50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000) · doi:10.1109/5.843002
[25] Xian, J., Li, S.: Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications. Appl. Comput. Harmon. Anal. 23(2), 171–180 (2007) · Zbl 1135.42013 · doi:10.1016/j.acha.2006.10.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.