×

Image and audio-speech denoising based on higher-order statistical modeling of wavelet coefficients and local variance estimation. (English) Zbl 1203.94010

Summary: At first, this paper is concerned with wavelet-based image denoising using Bayesian technique. In conventional denoising process, the parameters of probability density function (PDF) are usually calculated from the first few moments, mean and variance. In the first part of our work, a new image denoising algorithm based on Pearson Type VII random vectors is proposed. This PDF is used because it allows higher-order moments to be incorporated into the noiseless wavelet coefficients’ probabilistic model. One of the cruxes of the Bayesian image denoising algorithms is to estimate the variance of the clean image. Here, maximum a posterior (MAP) approach is employed for not only noiseless wavelet-coefficient estimation but also local observed variance acquisition. For the local observed variance estimation, the selection of noisy wavelet-coefficient model, either a Laplacian or a Gaussian distribution, is based upon the corrupted noise power where Gamma distribution is used as a prior for the variance. Evidently, our selection of prior is motivated by analytical and computational tractability. In our experiments, our proposed method gives promising denoising results with moderate complexity. Eventually, our image denoising method can be simply extended to audio/speech processing by forming matrix representation whose rows are formed by time segments of digital speech waveforms. This way, the use of our image denoising methods can be exploited to improve the performance of various audio/speech tasks, e.g., denoised enhancement of voice activity detection to capture voiced speech, significantly needed for speech coding and voice conversion applications. Moreover, one of the voice abnormality detections, called oropharyngeal dysphagia classification, is also required denoising method to improve the signal quality in elderly patients. We provide simple speech examples to demonstrate the prospects of our techniques.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A11 Application of orthogonal and other special functions
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
93E10 Estimation and detection in stochastic control theory
46N30 Applications of functional analysis in probability theory and statistics
Full Text: DOI

References:

[1] DOI: 10.1109/83.862630 · Zbl 0962.94027 · doi:10.1109/83.862630
[2] DOI: 10.1016/j.csl.2009.06.002 · doi:10.1016/j.csl.2009.06.002
[3] DOI: 10.1080/00401706.1969.10490731 · doi:10.1080/00401706.1969.10490731
[4] DOI: 10.1109/TIP.2007.901238 · doi:10.1109/TIP.2007.901238
[5] DOI: 10.1142/S021969131000333X · Zbl 1189.94017 · doi:10.1142/S021969131000333X
[6] DOI: 10.1109/18.382009 · Zbl 0820.62002 · doi:10.1109/18.382009
[7] DOI: 10.1093/biomet/81.3.425 · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[8] Ece D. G., IEEE Trans. Power Delivery 19 pp 1040–
[9] DOI: 10.1016/j.compbiomed.2006.08.008 · doi:10.1016/j.compbiomed.2006.08.008
[10] DOI: 10.1109/83.892442 · Zbl 1039.68785 · doi:10.1109/83.892442
[11] Gao H. Y., J. Comput. Graph Statist. 7 pp 469–
[12] Gao H. Y., Statist. Sinica 7 pp 855–
[13] Gradshteyn I. S., Table of Integrals, Series, and Products (2000) · Zbl 0981.65001
[14] DOI: 10.1142/S1793351X07000214 · doi:10.1142/S1793351X07000214
[15] DOI: 10.1016/j.neucom.2007.08.010 · doi:10.1016/j.neucom.2007.08.010
[16] DOI: 10.1142/S021969130900291X · Zbl 1172.94317 · doi:10.1142/S021969130900291X
[17] Kerl P., The Royal Society of London 186 pp 343–
[18] DOI: 10.1142/S0219691309003100 · Zbl 1175.94019 · doi:10.1142/S0219691309003100
[19] DOI: 10.1109/LSP.2007.914927 · doi:10.1109/LSP.2007.914927
[20] Mihcak M. K., IEEE Signal Process. Lett. 12 pp 300–
[21] DOI: 10.2307/3619777 · doi:10.2307/3619777
[22] Norton R. M., American Statistician 38 pp 135–
[23] DOI: 10.1109/TIP.2003.818640 · Zbl 1279.94028 · doi:10.1109/TIP.2003.818640
[24] DOI: 10.1109/TIP.2008.2002163 · Zbl 1371.94309 · doi:10.1109/TIP.2008.2002163
[25] DOI: 10.1109/TSP.2008.920488 · Zbl 1390.94403 · doi:10.1109/TSP.2008.920488
[26] DOI: 10.1109/TSP.2002.804091 · doi:10.1109/TSP.2002.804091
[27] DOI: 10.1109/LSP.2002.806054 · doi:10.1109/LSP.2002.806054
[28] Sorenson H. W., Parameter Estimation: Principles and Problems (1980)
[29] Spadotto A. A., Int. J. Appl. Math. Comput. 207 pp 75–
[30] Spiegel M. R., Theory and Problems of Probability and Statistics (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.