×

On the topology of \(G\)-manifolds with finitely many non-principal orbits. (English) Zbl 1255.57029

In this paper, for a compact Lie-group \(G\), smooth \(G\)-manifolds are studied. The authors give a classification of those compact \(G\)-manifolds which have only finitely many non-principal orbits. This class of manifolds is a natural generalization of cohomogeneity-one manifolds which have zero or two non-principal orbits.
Using their classification the authors construct infinite families of \(11\)-dimensional and \(13\)-dimensional \(SU(3)\)-manifolds with two non-principal orbits which are equal to Aloff-Wallach spaces. They also show that these families contain infinitely many pairwise non-homotopy equivalent examples.
Moreover, the question is studied how many non-principal orbits a \(G\)-manifold with finitely many non-principal orbits can have.

MSC:

57S15 Compact Lie groups of differentiable transformations
53C20 Global Riemannian geometry, including pinching

References:

[1] Alekseevski, A. V.; Alekseevski, D. V., Riemannian \(G\)-manifolds with one dimensional orbit space, Ann. Glob. Anal. Geom., 11 (1993) · Zbl 0810.53043
[2] Berestovskii, V., Homogeneous Riemannian manifolds of positive Ricci curvature, Math. Notes, 58, 3, 905-909 (1995) · Zbl 0862.53040
[3] Bröcker, T.; tom Dieck, T., Representations of Compact Lie Groups, Grad. Texts in Math., vol. 98 (1985), Springer · Zbl 0581.22009
[4] Bröcker, T.; tom Dieck, T., Kobordismentheorie, Lecture Notes in Math., vol. 178 (1970), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0211.55501
[5] Bechtluft-Sachs, S.; Wraith, D. J., Manifolds of low cohomogeneity and positive Ricci curvature, Diff. Geom. Appl., 28, 282-289 (2010) · Zbl 1190.53029
[6] S. Bechtluft-Sachs, D.J. Wraith, On the curvature on \(G\) http://dx.doi.org/10.1007/s10711-012-9719-z; S. Bechtluft-Sachs, D.J. Wraith, On the curvature on \(G\) http://dx.doi.org/10.1007/s10711-012-9719-z · Zbl 1255.57029
[7] Bredon, G., Introduction to Compact Transformation Groups, Pure Appl. Math., vol. 46 (1972), Academic Press: Academic Press New York, London · Zbl 0246.57017
[8] Conner, P. E., Differentiable Periodic Maps, Lecture Notes in Math., vol. 738 (1979), Springer · Zbl 0417.57019
[9] Grove, K., Geometry of, and via, symmetries, (Conformal, Riemannian and Lagrangian Geometry. Conformal, Riemannian and Lagrangian Geometry, Univ. Lecture Ser., vol. 27 (2000), American Mathematical Society), 31-53 · Zbl 1380.53002
[10] Grove, K.; Ziller, W., Curvature and symmetry of Milnor spheres, Ann. of Math. (2), 152, 1, 331-367 (2000) · Zbl 0991.53016
[11] Grove, K.; Ziller, W., Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math., 149, 619-646 (2002) · Zbl 1038.53034
[12] Husemller, D., Fibre Bundles, Grad. Texts in Math., vol. 20 (1994), Springer
[13] Kruggel, B., A homotopy classification of certain 7-manifolds, Trans. Amer. Math. Soc., 349, 7, 2827-2843 (1997) · Zbl 0880.57013
[14] Kreck, M.; Stolz, S., Nonconnected moduli spaces of positive sectional curvature metrics, J. Am. Math. Soc., 6, 825-850 (1993) · Zbl 0793.53041
[15] McCleary, J., Userʼs Guide to Spectral Sequences, Math. Lecture Ser., vol. 12 (1985), Publish or Perish Inc.: Publish or Perish Inc. Wilmington, DE · Zbl 0577.55001
[16] Milnor, J., On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology, 3, 223-230 (1965) · Zbl 0132.19601
[17] Okonek, C.; Schneider, M.; Spindler, H., Vector Bundles on Complex Projective Spaces, Progr. Math., vol. 3 (1980), Birkhäuser: Birkhäuser Boston · Zbl 0438.32016
[18] Shankar, K., Strong inhomogeneity of Eschenburg spaces, Michigan Math. J., 50, 125-141 (2002) · Zbl 1036.53022
[19] Stong, R. E., Notes on Cobordism Theory (1968), Princeton University Press · Zbl 0174.54701
[20] Stong, R. E., A cobordism, Proc. Amer. Math. Soc., 35, 584-586 (1972) · Zbl 0254.57020
[21] Thom, R., Quelques proptiétés globales des variétés différentiables, Comment. Math. Helv., 28, 17-86 (1954) · Zbl 0057.15502
[22] Thomas, A., Almost complex structures on complex projective spaces, Trans. Amer. Math. Soc., 193, 123-132 (1974) · Zbl 0264.53019
[23] Ziller, W., Examples of Riemannian manifolds with non-negative sectional curvature, (Surveys in Differential Geometry XI (2007), International Press), 63-102 · Zbl 1153.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.