×

Stretched Cartesian grids for solution of the incompressible Navier-Stokes equations. (English) Zbl 0980.76057

Two grid stretching functions on Cartesian grids are introduced and analysed for the numerical solution of incompressible Navier-Stokes equations in pressure-velocity formulation. One stretching function is particularly designed for Fourier method, while the other aims at central differences and a staggered distribution of variables. The influence of the stretching functions on the matrix of the discretized pressure equation is analysed, and limits of the stretching are computed. Both stretchings are tested in numerical examples.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Moin, Annual Reviews in Fluid Mechanics 30 pp 539– (1998) · Zbl 1398.76073 · doi:10.1146/annurev.fluid.30.1.539
[2] Cain, Journal of Computational Physics 56 pp 272– (1984) · Zbl 0557.65097 · doi:10.1016/0021-9991(84)90096-2
[3] Buell, Journal of Computational Physics 95 pp 313– (1995) · Zbl 0725.76072 · doi:10.1016/0021-9991(91)90279-T
[4] Computational Methods for Fluid Flow. Springer: New York, 1983; 143-166. · doi:10.1007/978-3-642-85952-6_6
[5] Kim, Journal of Computational Physics 58 pp 308– (1985) · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[6] Le, Journal of Computational Physics 92 pp 369– (1991) · Zbl 0709.76030 · doi:10.1016/0021-9991(91)90215-7
[7] Resolution requirements for direct numerical simulation of near-wall turbulent flow using finite differences. Report QMW-EP-1097, Department of Aeronautical Engineering, Queen Mary & Westfield College, London, UK, 1994.
[8] Wang, Journal of Fluid Mechanics 319 pp 197– (1996) · Zbl 0881.76089 · doi:10.1017/S0022112096007318
[9] A numerical investigation of the compressible mixing layer. Report TF-45, Thermomechanical Division, Department of Mechanical Engineering, Stanford University, 1989.
[10] Very low storage time-advancement schemes. Internal Report, NASA-Ames Research Center, Moffet Field, CA, 1986.
[11] Spectral Methods in Fluid Dynamics. Springer: Berlin, 1988. · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[12] Numerical Analysis. A Second Course. SIAM: Philadelphia, PA.105-107, 1990. · doi:10.1137/1.9781611971323
[13] Methods of Applied Mathematics. Prentice-Hall: Englewood Cliffs, NJ, 1965; 21-23.
[14] Numerical Recipes in Fortran. Cambridge University Press: Cambridge, 1992; 77-82.
[15] Advanced Calculus for Applications. Prentice-Hall: Englewood Cliffs, NJ, 1963; 38-40.
[16] Numerical wave propagation analysis for stretched grids. AIAA Paper No. 94-0172, 1994.
[17] Gresho, Computers and Fluids 9 pp 223– (1981) · doi:10.1016/0045-7930(81)90026-8
[18] Hahn, Journal of Computational Physics 134 pp 342– (1997) · Zbl 0887.76044 · doi:10.1006/jcph.1997.5712
[19] Avital, AIAA Journal 37 pp 161– (1999) · doi:10.2514/2.709
[20] Villermaux, Journal of Fluid Mechanics 263 pp 63– (1994) · doi:10.1017/S0022112094004039
[21] Michalke, Progress in Aerospace Science 21 pp 159– (1984) · doi:10.1016/0376-0421(84)90005-8
[22] Crow, Journal of Fluid Mechanics 48 pp 547– (1971) · doi:10.1017/S0022112071001745
[23] Herbert, Applied Numerical Mathematics 7 pp 3– (1991) · Zbl 0713.76054 · doi:10.1016/0168-9274(91)90101-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.