×

Finite element methods for unsteady solidification problems arising in prediction of morphological structure. (English) Zbl 0658.76087

Galerkin finite element methods are presented for calculation of the dynamic transitions between planar and deep two-dimensional cellular interface morphologies in directional solidification of a binary alloy from models that include solute transport, the phase diagram, and the interfacial free energy between melt and crystals. The unknown melt-solid interface shape is accounted for in the finite element formulation by mapping the equations to a fixed domain. Novel nonorthogonal transformations are introduced combining cylindrical and Cartesian coordinate interface representations for approximating the deep cellular interfaces that evolve from a planar solidification front. The algorithm for time integration combines a fully implicit Adams-Moulton algorithm with the isotherm-Newton method for solving the nonlinear set of differential-algebraic equations that result from the spatial discretization of the moving-boundary problem. The fully implicit scheme is found to be more accurate and efficient than an explicit predictor- corrector algorithm. Sample calculations show the connectivity between families of shapes with resonant spatial wavelengths.

MSC:

76R99 Diffusion and convection
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Adornato, P. M., and Brown, R. A. (1987). Petrov-Galerkin methods for natural convection in directional solidification of binary alloys,Int. J. Numer. Methods Fluids 7, 761-791. · Zbl 0628.76085 · doi:10.1002/fld.1650070802
[2] Brown, R. A. (1980). Finite element methods for calculation of capillary surfaces,J. Computat. Phys. 33, 217-235. · Zbl 0427.76038 · doi:10.1016/0021-9991(79)90017-2
[3] Chang, C. J., and Brown, R. A. (1984). Natural convection in steady solidification: Finite element analysis of a two-phase Rayleigh-Benard problem,J. Computat. Phys. 53, 1-27. · Zbl 0598.76096 · doi:10.1016/0021-9991(84)90049-4
[4] Derby, J. J., and Brown, R. A. (1986). A fully implicit method for simulation of the onedimensional solidification of a non-dilute binary alloy,Chem. Eng. Sci. 41, 37-46. · doi:10.1016/0009-2509(86)85195-8
[5] Derby, J. J., Atherton, L. J., Thomas, P. D., and Brown, R. A. (1987). Finite element methods for analysis of the dynamics and control of Czochralski crystal growth,J. Sci. Comput. 2, 297-343. · Zbl 0666.65086 · doi:10.1007/BF01061294
[6] Duda, L. J., Malone, M. F., Notter, R. H., and Vrentas, J. S. (1975).Int. J. Heat Mass Transfer 18, 901. · doi:10.1016/0017-9310(75)90182-9
[7] Ettouney, H. M., and Brown, R. A. (1983). Finite element methods for steady solidification problems,J. Computat. Phys. 49, 118-150. · Zbl 0503.65074 · doi:10.1016/0021-9991(83)90117-1
[8] Gresho, P. M., Lee, R. L., and Sani, R. L. (1980). On the time dependent solution of the incompressible Navier-Stokes equations in two and three dimensions, inRecent Advances in Numerical Methods in Fluids, Taylor and Morgan (eds.), Pineridge Press, Swansea, U.K.
[9] Hume, E. C., III, Deen, W. M., and Brown, R. A. (1985). Comparison of boundary and finite element methods for solution of moving-boundary problems governed by a potential,Int. J. Numer. Methods Eng. 21, 1295-1314. · Zbl 0594.65083 · doi:10.1002/nme.1620210710
[10] Keller, H. B. (1977). Numerical solution of bifurcation and nonlinear eigenvalue problems, inApplications of Bifurcation Theory, Rabinowitz, P. H. (ed.), Academic Press, New York, pp. 359-384.
[11] Kerszberg, M. (1983). Pattern emergence and selection in crystal growth,Phys. Rev. B 27, 3909-3912. · doi:10.1103/PhysRevB.27.3909
[12] Kheshgi, H. S., and Scriven, L. E. (1983). Penalty finite element analysis of time dependent two-dimensional free-surface film flow, inFinite Elements in Fluids, Vol. 5, J. T. Odenet at. (eds.), Wiley, New York. · Zbl 0506.76028
[13] Lynch, D. R. (1982). Unified approach to simulation of deforming elements with application to phase change problems,J. Computat. Phys. 47, 387-411. · Zbl 0486.65063 · doi:10.1016/0021-9991(82)90090-0
[14] Lynch, D. R., and Sullivan, J. M. (1985). Heat conservation in deforming element phase change simulation,J. Computat. Phys. 57, 303-317. · Zbl 0552.65074 · doi:10.1016/0021-9991(85)90047-6
[15] McFadden, G. B., and Coriell, S. R. (1984). Nonplanar interface morphologies during unidirectional solidification of binary alloys,Physica D 12, 253-261. · doi:10.1016/0167-2789(84)90529-3
[16] Meiron, D. I. (1986). Selection of steady-states in the two-dimensional symmetric model of dendritic growth,Phys. Rev. A 33, 2704-2715. · doi:10.1103/PhysRevA.33.2704
[17] Mittelman, H. D. (1977). On the approximation of capillary surfaces in a gravitational field,Computing 18, 141-148. · Zbl 0364.65101 · doi:10.1007/BF02243623
[18] Mullins, W. W., and Sekerka, R. F. (1964). Stability of a planar interface during solidification of a dilute binary alloy,J. Appl. Phys. 35, 444-451. · doi:10.1063/1.1713333
[19] Petzold, L. R. (1982a). Sandia National Laboratories report No. SAND 82-8637.
[20] Petzold, L. R. (1982b). Differential-algebraic equations are not ODEs,SIAM J. Stat. Comput. 3, 367-384. · Zbl 0482.65041 · doi:10.1137/0903023
[21] Ramprasad, N., Bennett, M. J., and Brown, R. A. (1988). Wavelength dependence of cells of finite depth in directional solidification,Phys. Rev. B 38, 583-592. · doi:10.1103/PhysRevB.38.583
[22] Saito, H. L., and Scriven, L. E. (1981). Study of coating flow by the finite element method,J. Computat. Phys. 42, 53-76. · Zbl 0466.76035 · doi:10.1016/0021-9991(81)90232-1
[23] Sullivan, J. M., Jr. (1987). Finite element simulation of planar instabilities during solidification of an undercooled melt,J. Computat. Phys. 69, 81-111. · Zbl 0627.65126 · doi:10.1016/0021-9991(87)90157-4
[24] Thomas, P. D., and Brown, R. A. (1987).LU decomposition of banded matrices with augmented dense constraints,Int. J. Numer. Methods Eng. 24, 1451-1459. · Zbl 0616.65033 · doi:10.1002/nme.1620240804
[25] Trivedi, R. (1984). Interdendritic spacing: Part II: A comparison of theory and experiment,Met. Trans. 15A, 977-982.
[26] Tsai, H. L., and Rubinsky, B. (1984). A front tracking finite element study on change of phase interface stability during solidification processes in solutions,J. Crystal Growth 70, 56-63. · doi:10.1016/0022-0248(84)90247-1
[27] Ungar, L. H., and Brown, R. A. (1982). The dependence of the shape and stability of rotating captive drops on multiple parameters,Phil. Trans. R. Soc. London 301A, 457-480. · Zbl 0495.76091
[28] Ungar, L. H., and Brown, R. A. (1984). Cellular interface morphologies in directional solidifications, 1. The one-sided model,Phys. Rev. B 29, 1367-1380 (1984). · doi:10.1103/PhysRevB.29.1367
[29] Ungar, L. H., and Brown, R. A. (1985). Cellular interface morphologies in directional solidification. 4. The formation of deep cells,Phys. Rev. B 31, 5931-5940. · doi:10.1103/PhysRevB.31.5931
[30] Ungar, L. H., Bennett, M. J., and Brown, R. A. (1985). Cellular interface morphologies in directional solidification. 3. The effect of coupled heat transfer,Phys. Rev. B 31, 5923-5930. · doi:10.1103/PhysRevB.31.5923
[31] Wheeler, A. A. (1987). A numerical scheme to model the morphological stability of a freezing binary alloy;J. Appl. Mech. 39, 381-401.
[32] Wollkind, D., and Segel, L. (1970). A nonlinear stability analysis of the freezing of a dilute binary alloy,Phil. Trans. R. Soc. London A268, 351-380.
[33] Yamaguchi, Y., Chang, C. J., and Brown, R. A. (1984). Multiple buoyancy-driven flows in a cylinder heated from below,Phil. Trans. R. Soc. London 312A, 519-552 (1984). · Zbl 0573.76079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.