×

Stability and stabilization of positive fractional linear systems by state-feedbacks. (English) Zbl 1219.93099

Summary: Notations of the practical stability and of the asymptotic stability of positive and cone fractional 1D and 2D linear systems are introduced. Necessary and sufficient conditions for the practical stability and the asymptotic stability of positive and cone fractional 1D and 2D linear systems are established. It is shown that the checking of the practical stability and asymptotic stability of positive 2D linear systems can be reduced to testing the stability of corresponding 1D positive linear systems. Three LMI approaches are proposed for checking the stability of positive fractional linear systems. LMI approach is applied to compute gain matrices of state-feedbacks such that closed-loop systems are positive and asymptotically stable. The proposed methods are illustrated on numerical examples.

MSC:

93D15 Stabilization of systems by feedback
93C05 Linear systems in control theory
93C55 Discrete-time control/observation systems

Software:

CRONE

References:

[1] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York, 2000. · Zbl 0988.93002
[2] T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002. · Zbl 1005.68175
[3] T. Kaczorek, ”Reachability and controllability to zero of cone fractional linear systems”, Archives of Control Sciences 17 (3), 357-367 (2007). · Zbl 1152.93393
[4] T. Kaczorek, ”Computation of realizations of discrete-time cone systems”, Bull. Pol. Ac.: Tech. 54 (3), 347-350 (2006). · Zbl 1194.93129
[5] R. P. Roesser, ”A discrete state-space model for linear image processing”, IEEE Trans. Autom. Contr. 20 (1), 1-10 (1975). · Zbl 0304.68099 · doi:10.1109/TAC.1975.1100844
[6] E. Fornasini and G. Marchesini, ”Double indexed dynamical systems”, Math. Sys. Theory 12, 59-72 (1978). · Zbl 0392.93034 · doi:10.1007/BF01776566
[7] J. Kurek, ”The general state-space model for a two-dimensional linear digital systems”, IEEE Trans. Autom. Contr. AC-30, 600-602 (1985). · Zbl 0561.93034 · doi:10.1109/TAC.1985.1103998
[8] T. Kaczorek, ”Reachability and minimum energy control of positive 2D systems with delays”, Control and Cybernetics 34 (2), 411-423 (2005). · Zbl 1167.93359
[9] T. Kaczorek, ”Positive 2D systems with delays”, 12th IEEE IFAC Int. Conf. Methods in Automation and Robotics, MMAR 2006 1, CD-ROM (2006).
[10] M. E. Valcher, ”On the internal stability and asymptotic behavior of 2D positive systems”, IEEE Trans. on Circuits and Systems 44 (7), 602-613 (1997). · Zbl 0891.93046 · doi:10.1109/81.596941
[11] T. Kaczorek, ”Reachability and controllability to zero tests for standard and positive fractional discrete-time systems”, J. Automation and System Engineering 42 (6-8), 769-787 (2008).
[12] J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publ., Dordrecht, 1991. · Zbl 0732.93008
[13] J. Klamka, ”Positive controllability of positive systems”, Proc. American Control Conf. ACC-2002 1, CD-ROM (2002). · Zbl 1039.93003
[14] M. Busłowicz, ”Simple stability conditions for linear positive discrete-time systems with delays”, Bull. Pol. Ac.: Tech. 56 (4), 325-328 (2008).
[15] K. Gałkowski and A. Kummert, ”Fractional polynomials and nD systems”, Proc IEEE Int. Symp. Circuits and Systems 1, CD-ROM (2005).
[16] T. Kaczorek, ”Asymptotic stability of positive 1D and 2D linear systems”, Recent Advances in Control and Automation 1, 41-52 (2008).
[17] T. Kaczorek, ”LMI approach to stability of 2D positive systems”, Multidimensional Systems and Signal Processing 20 (1), 39-54 (2009). · Zbl 1169.93022 · doi:10.1007/s11045-008-0050-7
[18] T. Kaczorek, ”Asymptotic stability of positive 2D linear systems with delays”, Bull. Pol. Ac.: Tech. 57 (2), 133-138 (2009).
[19] M. Busłowicz, ”Robust stability of positive discrete-time linear systems with multiple delays with unity rank uncertainty structure or non-negative perturbation matrices”, Bull. Pol. Ac.: Tech. 55 (1), 347-350 (2007). · Zbl 1203.93164
[20] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York, 1993. · Zbl 0789.26002
[21] K. Nashimoto, Fractional Calculus, Descartes Press, Koriyama, 1984.
[22] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. · Zbl 0292.26011
[23] P. Ostalczyk, Epitome of the Fractional Calculus, Theory and its Applications in Automatics, Lodz Technical University Publishing House, Łódź, 2008.
[24] A. Oustaloup, Commande CRONE, Hermés, Paris, 1993.
[25] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0924.34008
[26] T. Kaczorek, ”Reachability and controllability to zero of positive fractional discrete-time systems”, Machine Intelligence and Robotics Control 6 (4), 130-143 (2007).
[27] T. Kaczorek, ”Fractional positive continuous-time linear systems and their reachability”, Int. J. Appl. Math. Comput. Sci. 18 (2), 223-228 (2008). · Zbl 1235.34019 · doi:10.2478/v10006-008-0020-0
[28] T. Kaczorek, ”Asymptotic stability of positive 2D linear systems”, Proc. 13th Scientific Conf. Computer Applications in Electrical Engineering 1, CD-ROM (2008). · Zbl 1154.93017
[29] T. Kaczorek, ”Practical stability of positive fractional discretetime linear systems”, Bull. Pol. Ac.: Tech. 56 (4), 313-317 (2008).
[30] T. Kaczorek, ”Independence of the asymptotic stability of positive the 2D linear systems with delays of their delays”, Int. J. Appl. Math. Comput. Sci. 19 (2), 255-261 (2009). · Zbl 1167.93023 · doi:10.2478/v10006-009-0021-7
[31] M. Twardy, ”An LMI approach to checking stability of 2D positive systems”, Bull. Pol. Ac.: Tech. 55 (4), 379-383 (2007).
[32] T. Kaczorek, ”Fractional 2D linear systems”, J. Automation, Mobile Robotics & Intelligent Systems 2 (2), 5-9 (2008). · Zbl 1173.93017 · doi:10.1108/03321640910929254
[33] T. Kaczorek, ”Positive different orders fractional 2D linear systems”, Acta Mechanica et Automatica 2 (2), 51-58 (2008).
[34] T. Kaczorek, ”Positive 2D fractional linear systems”, COMPEL 28 (2), 341-352 (2009). · Zbl 1173.93017 · doi:10.1108/03321640910929254
[35] P. Ostalczyk, ”The non-integer difference of the discrete-time function and its application to the control system synthesis”, Int. J. Syst, Sci. 31 (12), 1551-1561 (2000). · Zbl 1080.93592 · doi:10.1080/00207720050217322
[36] D. Sierociuk and D. Dzieliński, ”Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation”, Int. J. Appl. Math. Comp. Sci. 16 (1), 129-140 (2006). · Zbl 1334.93172
[37] M. Vinagre and V. Feliu, ”Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures”, Proc. 41st IEEE Conf. Decision and Control 1, 214-239 (2002).
[38] T. Kaczorek and K. Rogowski, ”Positivity and stabilization of fractional 2D linear systems described by Roesser model”, Proc. Conf. Methods and Models in Automation and Robotics 1, CD-ROM (2009).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.