×

Entropy dissipative higher order accurate positivity preserving time-implicit discretizations for nonlinear degenerate parabolic equations. (English) Zbl 1531.65184

Summary: We develop entropy dissipative higher order accurate local discontinuous Galerkin (LDG) discretizations coupled with Diagonally Implicit Runge-Kutta (DIRK) methods for nonlinear degenerate parabolic equations with a gradient flow structure. Using the simple alternating numerical flux, we construct DIRK-LDG discretizations that combine the advantages of higher order accuracy, entropy dissipation and proper long-time behavior. We theoretically prove the entropy dissipation of the implicit Euler-LDG discretization without any time-step restrictions when no positivity constraint is imposed. Next, in order to ensure the positivity of the numerical solution, we use the Karush-Kuhn-Tucker (KKT) limiter, which achieves a positive solution by coupling the positivity preserving KKT conditions with higher order accurate DIRK-LDG discretizations using Lagrange multipliers. In addition, mass conservation of the positivity-limited solution is ensured by imposing a mass conservation equality constraint to the KKT equations. Under a time step restriction, the unique solvability and entropy dissipation for implicit first order accurate in time, but higher order accurate in space, positivity-preserving LDG discretizations with periodic boundary conditions are proved, which provide a first theoretical analysis of the KKT limiter. Finally, numerical results demonstrate the higher order accuracy and entropy dissipation of the positivity-preserving DIRK-LDG discretizations for problems requiring a positivity limiter. In addition, we can observe from the numerical results that the implicit time-discrete methods alleviate the time-step restrictions needed for the stability of the numerical discretizations, which improves computational efficiency.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
35K65 Degenerate parabolic equations
35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
35B09 Positive solutions to PDEs

Software:

RODAS

References:

[1] Bessemoulin-Chatard, M.; Filbet, F., A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput., B559-B583 (2012) · Zbl 1273.65114
[2] Vázquez, J. L., The Porous Medium Equation: Mathematical Theory (2007), Oxford University Press · Zbl 1107.35003
[3] Zhang, Q.; Wu, Z.-L., Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput., 127-148 (2009) · Zbl 1203.65193
[4] Carrillo, J. A.; Chertock, A.; Huang, Y., A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys., 233-258 (2015) · Zbl 1388.65077
[5] Abdallah, N. B.; Gamba, I. M.; Toscani, G., On the minimization problem of sub-linear convex functionals. Kinet. Relat. Models, 857-871 (2011) · Zbl 1251.35168
[6] Carrillo, J. A.; Laurençot, P.; Rosado, J., Fermi-Dirac-Fokker-Planck equation: Well-posedness and long-time asymptotics. J. Differential Equations, 2209-2234 (2009) · Zbl 1181.35292
[7] Toscani, G., Finite time blow up in Kaniadakis-Quarati model of Bose-Einstein particles. Comm. Partial Differential Equations, 77-87 (2012) · Zbl 1252.35264
[8] Burger, M.; Carrillo, J. A.; Wolfram, M.-T., A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models, 59-83 (2010) · Zbl 1194.35026
[9] Liu, H.; Wang, Z., An entropy satisfying discontinuous Galerkin method for nonlinear Fokker-Planck equations. J. Sci. Comput., 1217-1240 (2016) · Zbl 1354.35158
[10] Liu, H.; Yu, H., Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker-Planck equations. SIAM J. Sci. Comput., A2296-A2325 (2014) · Zbl 1341.65038
[11] Liu, H.; Yu, H., The entropy satisfying discontinuous Galerkin method for Fokker-Planck equations. J. Sci. Comput., 803-830 (2015) · Zbl 1320.65143
[12] Cheng, Q.; Shen, J., A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.65195
[13] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 2440-2463 (1998) · Zbl 0927.65118
[14] Cockburn, B.; Kanschat, G.; Perugia, I.; Schötzau, D., Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal., 264-285 (2001) · Zbl 1041.65080
[15] Guo, R.; Xu, Y., A high order adaptive time-stepping strategy and local discontinuous Galerkin method for the modified phase field crystal equation. Commun. Comput. Phys., 123-151 (2018) · Zbl 1488.65420
[16] Tian, L.; Xu, Y.; Kuerten, J. G.; van der Vegt, J. J.W., An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations. J. Comput. Phys., 242-265 (2016) · Zbl 1349.76276
[17] Zhou, L.; Xu, Y., Stability analysis and error estimates of semi-implicit spectral deferred correction coupled with local discontinuous Galerkin method for linear convection-diffusion equations. J. Sci. Comput., 1001-1029 (2018) · Zbl 1407.65235
[18] Yang, Y.; Wei, D.; Shu, C.-W., Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations. J. Comput. Phys., 109-127 (2013) · Zbl 1349.65497
[19] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys., 3091-3120 (2010) · Zbl 1187.65096
[20] Zhang, X.; Shu, C.-W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys., 8918-8934 (2010) · Zbl 1282.76128
[21] Qin, T.; Shu, C.-W., Implicit positivity-preserving high-order discontinuous Galerkin methods for conservation laws. SIAM J. Sci. Comput., A81-A107 (2018) · Zbl 1380.65285
[22] Huang, F.; Shen, J., Bound/Positivity preserving and energy stable scalar auxiliary variable schemes for dissipative systems: applications to Keller-Segel and Poisson-Nernst-Planck equations. SIAM J. Sci. Comput., A1832-A1857 (2021) · Zbl 1512.65229
[23] van der Vegt, J. J.W.; Xia, Y.; Xu, Y., Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations. SIAM J. Sci. Comput., A2037-A2063 (2019) · Zbl 1503.65249
[24] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problem (2010), Springer Science & Business Media · Zbl 1192.65097
[25] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODE’s. SIAM J. Numer. Anal., 1006-1021 (1977) · Zbl 0374.65038
[26] Skvortsov, L., Diagonally implicit Runge-Kutta methods for stiff problems. Comput. Math. Math. Phys., 2110-2123 (2006)
[27] Facchinei, F.; Pang, J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1062.90001
[28] Kalmykov, Y. P.; Coffey, W.; Titov, S., On the Brownian motion in a double-well potential in the overdamped limit. Physica A, 412-420 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.