×

The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. (English) Zbl 0758.73001

Authors’ summary: “In the absence of external loads or in the presence of symmetries (i.e. translational and rotational invariance) the nonlinear dynamics of continuum systems preserves the total linear and the total angular momentum. Furthermore, under assumption met by all classical models, the internal dissipation in the system is non-negative. The goal of this work is the systematic design of conserving algorithms that preserve exactly the conservation laws of momentum and inherit the property of positive dissipation for any step-size. In particular, within the specific context of elastodynamics, a second order accurate algorithm is presented that exhibits exact conservation of both total (linear and angular) momentum and total energy. This scheme is shown to be amenable to a completely straightforward (Galerkin) finite element implementation and ideally suited for long-term/large-scale simulations. The excellent performance of the method relative to conventional time-integrators is conclusively demonstrated in numerical simulations exhibiting large strains coupled with a large overall rigid motion”.

MSC:

74A20 Theory of constitutive functions in solid mechanics
74B20 Nonlinear elasticity
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] V. I. Arnold,Mathematical Methods of Classical Mechanics, Springer Verleg, New York 1988.
[2] A. Bayliss and E. Isaacson,How to make your algorithm conservative, American Math. Soc., A594?A595 (1975).
[3] P. J. Channell,Symplectic Integration Algorithms, Los AJamos Natl Lab. Int. Rept. AT-6:ATN-83-9 (1983).
[4] P. G. Ciariet,Mathematical Elasticity Volume I. The Three Dimensional Theory, North-Holland, Amsterdam 1988.
[5] R. de Vogelaere,Methods of integration which preserve the contact transformation property of Hamiltonian equations, Dept. of Math., University of Notre Dame, Rept. 4 (1956).
[6] T. J. R. Hughes, W. K. Liu and P. Caughy,Transient finite element formulations that preserve energy, J. Appl. Mech.,45, 366-370 (1978). · Zbl 0392.73075 · doi:10.1115/1.3424303
[7] Feng Kan,Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp. Math.,4, 279-289 (1986). · Zbl 0596.65090
[8] J. K. Knowles,On the dissipation associated with equilibrium shocks infinite elasticity, J. Elasticity9(2), 131-158 (1979). · Zbl 0407.73037 · doi:10.1007/BF00041322
[9] R. A. Labudde and D. Greenspan,Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part I, Num. Math.,25, 323-346 (1976a). · Zbl 0364.65066 · doi:10.1007/BF01396331
[10] R. A. Labudde and D. Greenspan,Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part II, Num. Math.,26, 1-16 (1976b). · Zbl 0382.65031 · doi:10.1007/BF01396562
[11] F. M. Lasagni,Canonical Runge-Kutta methods, ZAMP,39, 952-953 (1988). · Zbl 0675.34010 · doi:10.1007/BF00945133
[12] J. E. Marsden,Elementary Classical Analysis, W.H. Freeman and Co., San Francisco 1974. · Zbl 0285.26005
[13] R. D. Ritchmyer and K. W. Morton,Difference Methods for Initial Value Problems, Interscience, New York, 2nd ed. 1967.
[14] R. D. Ruth,A canonical integration technique, IEEE Trans. Nucl. Sci.,30(4), 2669-2671 (1983). · doi:10.1109/TNS.1983.4332919
[15] J. M. Sanz-Serna,Runge-Kutta schemes for Hamiltonian systems, BIT,28, 877-883 (1988). · Zbl 0655.70013 · doi:10.1007/BF01954907
[16] C. Scovel,Symplectic numerical integration of Hamiltonian Systems, inThe Geometry of Hamiltonian Systems, Proc. Workshop held June 5th to 15th, 1989, pp. 463-496, Tudor Ratiu Ed., Springer-Verlag, Berlin 1991.
[17] J. C. Simo, J. E. Marsden and P. S. Krishnaprasad,The Hamiltonian structure of nonlinear elasticity: The convened representation of solids, rods and plates, Arch. Rat. Mech. Analysis,104, 125-183 (1989). · Zbl 0668.73014
[18] J. C. Simo and K. K. Wong,Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and angular momentum, Int. J. Num. Meth. Eng.,31, 19-52 (1991). · Zbl 0825.73960 · doi:10.1002/nme.1620310103
[19] J. C. Simo,Nonlinear stability of the time discrete variational problem in nonlinear heat conduction plasticity and viscoplasticity, Comp. Meth. Appl. Mech. Eng.,88, 111-131 (1991). · Zbl 0751.73066 · doi:10.1016/0045-7825(91)90235-X
[20] J. C. Simo, M. S. Rifai and D. D. Fox,On a stress resultant geometrically shell model. Part VI: Conserving algorithms for nonlinear dynamics, Comp. Meth. Appl. Mech. Eng.,34, 117-164 (1992). · Zbl 0760.73045
[21] J. C. Simo, N. Tarnow and K. Wong,Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comp. Meth. Appl. Mech. Eng. (in press). · Zbl 0764.73096
[22] C. Truesdell and W. Noll,The Nonlinear Field Theories of Mechanics, Handbuch der Physik, Vol. III/3, S. Flügge, Ed., Springer-Verlag, Berlin 1972. · Zbl 0779.73004
[23] G. Zhong and J. E. Marsden,Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A,33(3), 134-139 (1988). · Zbl 1369.70038 · doi:10.1016/0375-9601(88)90773-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.