×

Sustainability SI: optimal prices of electricity at public charging stations for plug-in electric vehicles. (English) Zbl 1364.90043

Summary: With an increasing deployment of plug-in electric vehicles, evaluating and mitigating the impacts of additional electrical loads created by these vehicles on power distribution grids become more important. This paper explores the use of prices of electricity at public charging stations as an instrument, in couple of road pricing, to better manage both power distribution and urban transportation networks. More specifically, a multi-class combined distribution and assignment model is formulated to capture the spatial distribution of plug-in electric vehicles across the transportation network and estimate the electrical loads they impose on the power distribution network. Power flow equations are subsequently solved to estimate real power losses. Prices of electricity at public charging stations and road tolls are then optimized to minimize both real power losses in the distribution grid and total travel time in the urban transportation network. The pricing model is formulated as a mathematical program with complementarity constraints and solved by a manifold suboptimization algorithm and a pattern search method. Numerical examples are presented to demonstrate the proposed model and solution algorithms.

MSC:

90B06 Transportation, logistics and supply chain management
91B24 Microeconomic theory (price theory and economic markets)
90B10 Deterministic network models in operations research

Software:

GAMS; MacMPEC; CONOPT; OpenDSS
Full Text: DOI

References:

[1] Baran M, Wu F (1989) Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans Power Deliv 4:735-743 · doi:10.1109/61.19266
[2] Bazaraa M, Sherali H, Shetty C (2006) Nonlinear programming: Theory and algorithms. Wiley, Hoboken · Zbl 1140.90040 · doi:10.1002/0471787779
[3] Brooke A, Kendrick D, Meeraus A, Raman R (2005) GAMS: A user’s guide. GAMS Development Corporation, Washington, DC
[4] Chen Y, Wang L (2013) Renewable portfolio standards in the presence of green consumers and emissions trading. Netw Spat Econ 13(2):149-181 · Zbl 1332.91084 · doi:10.1007/s11067-012-9176-0
[5] Cheng CS, Shirmohammadi D (1995) A three-phase power flow method for real-time distribution system analysis. IEEE Trans Power Syst 10:671-679 · doi:10.1109/59.387902
[6] Ciric RM, Ochoa LF (2003) Power flow in four-wire distribution networks-general approach. IEEE Trans Power Syst 18:1283-1290 · doi:10.1109/TPWRS.2003.818597
[7] Custódio AL, Vicente LN (2007) Using sampling and simplex derivatives in pattern search methods. SIAM J Optim 18:537-555 · Zbl 1144.65039 · doi:10.1137/050646706
[8] Custódio AL, Rocha H, Vicente LN (2010) Incorporating minimum Frobenius norm models indirect search. Comput Optim Appl 46:265-278 · Zbl 1190.90280 · doi:10.1007/s10589-009-9283-0
[9] Drud A (1994) CONOPT—a large scale GRG code. ORSA J Comput 6(2):207-216 · Zbl 0806.90113 · doi:10.1287/ijoc.6.2.207
[10] Dugan RC (2010) Tutorial: The OpenDSS Application. Presentation at 4th International Confercence on Integration of Rewable and Distributed Energy Resources, Albuquerque,NM
[11] Duvall M (2004) Advanced batteries for electric drive vehicles. A technology and cost-effectiveness assessment for battery electric vehicles, power assist hybrid electric vehicles, and plug-in hybrid electric vehicles. EPRI, Palo Alto, CA, Final Report 1009299
[12] EDSO for Smart Grids (2012) EDSO’s position on electric vehicles charging infrastructure. Available at: http://www.edsoforsmartgrids.eu/uploads/documents/Position
[13] Fletcher R, Leyffer S (2004) Solving mathematical program with complementarity constraints for nonlinear programs. Optim Methods Softw 19(1):15-40 · Zbl 1074.90044 · doi:10.1080/10556780410001654241
[14] Fox News (2012) http://www.foxnews.com/travel/2012/01/31/are-electric-car-charging-stations-new-must-have-hotel-amenity/. Accessed 28 June 2012
[15] Freund R (2007) Living with a BEV: A survey of user experiences. Proceedings of EVS-23, Anaheim, California
[16] GLOBLE-Net (2012) http://www.globe-net.com/articles/2012/april/9/bc-plan-for-electric-car-charging-stations-may-unleash-vehicles-around-province/. Accessed 28 June 2012 · Zbl 1067.90508
[17] Green RC, Wang L, Alam M (2011) The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook. Renew Sust Energ Rev 15:544-553 · doi:10.1016/j.rser.2010.08.015
[18] Hadley S, Tsvetkova A (2009) Potential impacts of plug-in hybrid electric vehicles on regional power generation. Electr J 22(10):56-68 · doi:10.1016/j.tej.2009.10.011
[19] He F, Wu D, Yin Y, Guan Y (2013a) Optimal deployment of public charging stations for plug-in hybrid electric vehicles. Transp Res B 47:87-101 · doi:10.1016/j.trb.2012.09.007
[20] He F, Yin Y, Zhou J (2013b) Integrated pricing of roads and electricity enabled by wireless power transfer. Transp Res C 34:1-15 · doi:10.1016/j.trc.2013.05.005
[21] Hearn, D.; Ramana, M.; Marcotte, P. (ed.); Nguyen, S. (ed.), Solving congestion toll pricing models, 109-124 (1998), Boston · Zbl 1067.90508 · doi:10.1007/978-1-4615-5757-9_6
[22] Karnama A (2009) Analysis of integration of plug-in hybrid electric vehicles in the distribution grid. Master’s Thesis. Stockholm, Sweden: Royal Institute of Technology
[23] Kersting WH (2000) Radial distribution test feeders. Available at: http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html · Zbl 1059.90146
[24] Kersting WH (2012) Distribution system modeling and analysis. CRC Press, Taylor & Francis Group, Boca Raton · doi:10.1201/b12056-31
[25] Kitamura R, Sperling D (1987) Refueling behavior of automobile drivers. Transp Res A 21(3):235-245 · doi:10.1016/0191-2607(87)90017-3
[26] Kitthamkesorn S, Chen A, Xu X, Ryu S (2013) Modeling mode and route similarities in network equilibirum problem with go-green modes. Netw Spat Econ. doi:10.1007/s11067-013-9201-y · Zbl 1364.90405 · doi:10.1007/s11067-013-9201-y
[27] Kolda T, Lewis R, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45:385-482 · Zbl 1059.90146 · doi:10.1137/S003614450242889
[28] Lawphongpanich S, Yin Y (2010) Solving Pareto-improving congestion pricing for general road networks. Transp Res C 18(2):234-246 · doi:10.1016/j.trc.2009.08.006
[29] Lin Z, Greene DL (2011) Promoting the market for plug-in hybrid and battery eletric vehicles: the role of recharge avaiablity. Transp Res Rec 2252:49-56 · doi:10.3141/2252-07
[30] López-Lezama JM, Padilha-Feltrin A (2011) Optimal contract pricing of distributed generation in distribution networks. IEEE Trans Power Syst 26:128-136 · doi:10.1109/TPWRS.2010.2048132
[31] Lou Y, Yin Y, Lawphongpanich S (2010) Robust congestion pricing under boundedly rational user equilibrium. Transp Res B 44:15-28 · doi:10.1016/j.trb.2009.06.004
[32] Luo Z-Q, Pang J-S, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, New York · Zbl 0898.90006 · doi:10.1017/CBO9780511983658
[33] Maitra A, Taylor J, Brooks D, Alexander M, Duvall M (2009) Integrating plug-in electric vehilces with the distribtuion system. 20th International Conference on Electricity Distibution, Prague, 8-11 June 2009
[34] Maitra A, Kook K, Taylor J, Giumento A (2010) Grid impacts of plug-in electric vehicles on Hydro Quebec’s distribution system. Transmission and Distribution Conference and Exposition, 1-7 April 2010
[35] Milsoft Integrated Solutions (2005) WindMil I prodcut training manual. Abilene, Texas
[36] Momoh JA, Wang Y (1997) A unique distirbuion system loss minimization scheme via reconfiguration with line capability limts. Proceedings of ICPSOP, Abidjan, Cote D’lvoire, 14-17 Januray 1997
[37] More JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20:72-91 · Zbl 1187.90319 · doi:10.1137/080724083
[38] Mwakabuta N, Sekar A (2007) Comparative study of the IEEE 34 node test feeder under practical simplifications. Conference publications of Power Symposium, Sept. 30 2007-Oct. 2 2007, pp 484-491 · Zbl 1332.91084
[39] New York ISO (2009) Alternate route: Electrifying the tranportation sector. Tehnical Report, New York ISO, NY
[40] Putrus G, Suwanapingkarl P, Johnston D, Bentley E, Narayana M (2009) Impact of electric vehicles on power distribution networks. IEEE Vehicle Power and Propulsion Conference, pp 827-831 · Zbl 1144.65039
[41] Scheel H, Scholtes S (2000) Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math Oper Res 25(1):1-22 · Zbl 1073.90557 · doi:10.1287/moor.25.1.1.15213
[42] Sheffi Y (1984) Urban tranportation networks: Equilbiirum analysis with mathematical progamming methods. Prentice-Hall, Inc., Englewood Cliffs
[43] Taylor J, Maitra A, Alexander M, Brooks D, Duvall M (2009) Evaluation of the impact of plug-in electric vehicle loading on distribution system operations. IEEE Power & Energy Society General Meeting, Calgary, July 2009, 1-6
[44] Tinney W, Hart C (1967) Power flow solution by Newton’s Method. IEEE Trans Power Appar Syst PAS-86:1449-1460 · doi:10.1109/TPAS.1967.291823
[45] Tuttle DP, Kockelman KM (2012) Electrified vehicle technologies: trends, infrastructure implications and cost comparisons. J Transp Res Forum 51(1):35-51
[46] Wang J, Liu C, Ton D, Zhou Y, Kim J, Vyas A (2011) Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power. Energy Policy 39:4016-4021 · doi:10.1016/j.enpol.2011.01.042
[47] Yin Y (2000) Genetic-algorithm-based approach for bi-level programming models. J Transp Eng 126(2):115-120 · doi:10.1061/(ASCE)0733-947X(2000)126:2(115)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.