×

Elliptic stable envelope for Hilbert scheme of points in the plane. (English) Zbl 1471.14012

Stable envelopes are special classes in the cohomology or \(K\)-theory or elliptic cohomology of geometrically relevant moduli spaces. They govern the enumerative geometry of the space, the associated representation theory of a quantum group, and are related to solutions of some associated differential equations. In all these areas concrete formulas for stable envelopes are wanted.
The paper under review gives concrete formulas for the elliptic stable envelopes when the moduli space is the Hilbert scheme of points on the space.
Stable envelopes are associated to the torus fixed points of the space. The torus fixed points on the Hilbert scheme are parametrized by certain tuples of partitions. The author describes some trees subordinate to those partitions. To each tree a product of elliptic functions (and their inverses) is assigned, and the formula is a sum of such functions for all trees.
The proof technique is abelianization: an appropriate resolution of the attracting set of the fixed point, calculating the relevant class in the resolution, and pushing it forward.
As a byproduct \(K\)-theoretic and cohomological stable envelopes are also obtained, as the trigonometric and rational limits of the elliptic stable envelope formula.

MSC:

14C05 Parametrization (Chow and Hilbert schemes)
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
05E10 Combinatorial aspects of representation theory
14D20 Algebraic moduli problems, moduli of vector bundles
14J33 Mirror symmetry (algebro-geometric aspects)
19L47 Equivariant \(K\)-theory
32C99 Analytic spaces

References:

[1] Aganagic, M., Frenkel, E., Okounkov, A.: Quantum q-Langlands Correspondence (2017) · Zbl 1422.22021
[2] Aganagic, M., Okounkov, A.: Elliptic stable envelope (2016) · Zbl 1524.14098
[3] Aganagic, Mina; Okounkov, Andrei, Quasimap Counts and Bethe Eigenfunctions, Moscow Mathematical Journal, 17, 4, 565-600 (2017) · Zbl 1426.82018 · doi:10.17323/1609-4514-2017-17-4-565-600
[4] Galakhov, Dv; Mironov, Ad; Morozov, Ay; Smirnov, Av, Three-dimensional extensions of the Alday-Gaiotto-Tachikawa relation, Theor. Math. Phys., 172, 1, 939-962 (2012) · Zbl 1280.81092 · doi:10.1007/s11232-012-0088-4
[5] Ganter, N., The elliptic Weyl character formula, Compos. Math., 150, 7, 1196-1234 (2014) · Zbl 1300.55008 · doi:10.1112/S0010437X1300777X
[6] Gepner, D.J.: Homotopy topoi and equivariant elliptic cohomology. ProQuest LLC, Ann Arbor. Ph.D. thesis, University of Illinois at Urbana-Champaign (2006)
[7] Ginzburg, V.: Lectures on Nakajima’s quiver varieties. In: Geometric Methods in Representation Theory. I, Volume 24 of Sémin. Congr., pp. 145-219. Soc. Math. France, Paris (2012) · Zbl 1305.16009
[8] Ginzburg, V., Kapranov, M., Vasserot, E.: Elliptic Algebras and Equivariant Elliptic Cohomology. arXiv:q-alg/9505012 (2018)
[9] Ginzburg, V., Vasserot, E.: Algèbres elliptiques et \(K\)-théorie équivariante. Comptes Rendus Acad. Sci. Paris Sér. I Math. 319(6), 539-543 (1994) · Zbl 0838.17013
[10] Gorsky, Eugene; Neguț, Andrei, Infinitesimal change of stable basis, Selecta Mathematica, 23, 3, 1909-1930 (2017) · Zbl 1397.17015 · doi:10.1007/s00029-017-0327-5
[11] Grojnowski, I., Delocalised equivariant elliptic cohomology, Elliptic Cohomology, 114-121 (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1236.55008
[12] Kaledin, D., Geometry and topology of symplectic resolutions, Algebraic Geometry-Seattle 2005, 595-628 (2009), Providence: American Mathematical Society, Providence · Zbl 1182.53078
[13] Knutson, A., Zinn-Justin, P.: Grassmann-Grassmann conormal varieties, integrability, and plane partitions. arXiv:1612.04465 (2016) · Zbl 1471.14104
[14] Konno, H.: Elliptic Weight Functions and Elliptic q-KZ Equation (2017) · Zbl 1397.37083
[15] Konno, H.: Elliptic Stable Envelopes and Finite-Dimensional Representations of Elliptic Quantum Group (2018) · Zbl 1454.17007
[16] Koroteev, P., Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Quantum K-theory of Quiver Varieties and Many-Body Systems. arXiv:1705.10419 (2017) · Zbl 1478.19005
[17] Lurie, J., A survey of elliptic cohomology, Algebraic Topology, 219-277 (2009), Berlin: Springer, Berlin · Zbl 1206.55007
[18] Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology (2012) · Zbl 1422.14002
[19] Mcgerty, K.; Nevins, T., Kirwan surjectivity for quiver varieties, Invent. Math., 212, 1, 161-187 (2018) · Zbl 1433.14036 · doi:10.1007/s00222-017-0765-x
[20] Mumford, D.: Tata lectures on theta. I. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston (2007). With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman, Reprint of the 1983 edition
[21] Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76, 2, 365-416 (1994) · Zbl 0826.17026 · doi:10.1215/S0012-7094-94-07613-8
[22] Nakajima, H., Quiver varieties and Kac-Moody algebras, Duke Math. J., 91, 3, 515-560 (1998) · Zbl 0970.17017 · doi:10.1215/S0012-7094-98-09120-7
[23] Nakajima, H.: Lectures on Hilbert Schemes of Points on surfaces, Volume 18 of University Lecture Series. American Mathematical Society, Providence (1999) · Zbl 0949.14001
[24] Negut, A.: Quantum algebras and cyclic quiver varieties. ProQuest LLC, Ann Arbor. Ph.D. thesis, Columbia University (2015) · Zbl 1322.14029
[25] Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. arXiv:1512.07363 · Zbl 1402.19001
[26] Okounkov, A.; Pandharipande, R., The quantum differential equation of the Hilbert scheme of points in the plane, Transform. Groups, 15, 4, 965-982 (2010) · Zbl 1213.14108 · doi:10.1007/s00031-010-9116-3
[27] Okounkov, A., Smirnov, A.: Quantum difference equation for Nakajima varieties. arXiv:1602.09007 (2016) · Zbl 1504.14096
[28] Proudfoot, Nj, A survey of hypertoric geometry and topology, Toric Topology, 323-338 (2008), Providence: American Mathematical Society, Providence · Zbl 1151.53042
[29] Pushkar, P.P., Smirnov, A., Zeitlin, A.M.: Baxter Q-operator from quantum K-theory. arXiv:1612.08723 (2016) · Zbl 1447.82012
[30] Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: 3d Mirror Symmetry and Elliptic Stable Envelopes. arXiv:1902.03677 (2019) · Zbl 1495.14058
[31] Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: Three dimensional mirror self-symmetry of the cotangent bundle of the full flag variety. arXiv:1906.00134 (2019) · Zbl 1451.53116
[32] Rimányi, R.; Tarasov, V.; Varchenko, A., Trigonometric weight functions as \(K\)-theoretic stable envelope maps for the cotangent bundle of a flag variety, J. Geom. Phys., 94, 81-119 (2015) · Zbl 1349.19002 · doi:10.1016/j.geomphys.2015.04.002
[33] Rosu, I., Equivariant elliptic cohomology and rigidity, Am. J. Math., 123, 4, 647-677 (2001) · Zbl 0990.55002 · doi:10.1353/ajm.2001.0027
[34] Shenfeld, D.: Abelianization of stable envelopes in symplectic resolutions. ProQuest LLC, Ann Arbor. Ph.D. thesis, Princeton University (2013)
[35] Smirnov, A.: Polynomials associated with fixed points on the instanton moduli space. arXiv:1404.5304 (2014)
[36] Smirnov, A., On the instanton \(R\)-matrix, Commun. Math. Phys., 345, 3, 703-740 (2016) · Zbl 1345.81056 · doi:10.1007/s00220-016-2686-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.