×

A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations. (English) Zbl 1481.74097

Summary: We describe a model based on continuum mechanics that reduces the study of a significant class of problems of discrete dislocation dynamics to questions of the modern theory of continuum plasticity. As applications, we explore the questions of the existence of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74A45 Theories of fracture and damage
Full Text: DOI

References:

[1] Acharya, Amit; Beaudoin, Armand; Miller, Ron, New perspectives in plasticity theorydislocation nucleation, waves, and partial continuity of plastic strain rate, Math. Mech. Solids, 13, 3-4, 292-315 (2008) · Zbl 1161.74325
[2] Acharya, Amit, A model of crystal plasticity based on the theory of continuously distributed dislocations, J. Mech. Phys. Solids, 49, 4, 761-784 (2001) · Zbl 1017.74010
[3] Acharya, Amit, Driving forces and boundary conditions in continuum dislocation mechanics, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 459, 2034, 1343-1363 (2003) · Zbl 1041.74014
[4] Acharya, Amit, Constitutive analysis of finite deformation field dislocation mechanics, J. Mech. Phys. Solids, 52, 2, 301-316 (2004) · Zbl 1106.74315
[5] Acharya, Amit, Jump condition for GND evolution as a constraint on slip transmission at grain boundaries, Philos. Mag., 87, 8-9, 1349-1359 (2007)
[6] Acharya, Amit, New inroads in an old subjectplasticity, from around the atomic to the macroscopic scale, J. Mech. Phys. Solids, 58, 5, 766-778 (2010) · Zbl 1244.74026
[7] Acharya, Amit, Microcanonical entropy and mesoscale dislocation mechanics and plasticity, J. Elast., 104, 1-2, 23-44 (2011) · Zbl 1320.74010
[8] Alvarez, Olivier; Hoch, Philippe; Le Bouar, Yann; Monneau, Régis, Dislocation dynamicsshort-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181, 3, 449-504 (2006) · Zbl 1158.74335
[9] Aifantis, E. C., On the microstructural origin of certain inelastic models, J. Eng. Mater. Technol., 106, 4, 326-330 (1984)
[10] Acharya, Amit; Matthies, Karsten; Zimmer, Johannes, Travelling wave solutions for a quasilinear model of field dislocation mechanics, J. Mech. Phys. Solids, 58, 12, 2043-2053 (2010) · Zbl 1225.74012
[11] Aki, Keiiti; Richards, Paul G., Quantitative Seismology (2002), University Science Books: University Science Books Sausalito, CA, US
[12] Acharya, Amit; Roy, Anish, Size effects and idealized dislocation microstructure at small scalespredictions of a phenomenological model of mesoscopic field dislocation mechanics: Part I, J. Mech. Phys. Solids, 54, 8, 1687-1710 (2006) · Zbl 1120.74328
[13] Acharya, Amit; Tartar, Luc, On an equation from the theory of field dislocation mechanics, Boll. dell’ Unione Mat. Ital., 9, IV, 409-444 (2011) · Zbl 1233.35186
[15] Bulatov, V. V.; Cai, W.; Baran, R.; Kang, K., Geometric aspects of the ideal shear resistance in simple crystal lattices, Philos. Mag., 86, 25-26, 3847-3859 (2006)
[16] Bulatov, V. V.; Justo, J. F.; Cai, Wei; Yip, Sidney; Argon, A. S.; Lenosky, T.; de Koning, M.; Diaz de la Rubia, T., Parameter-free modelling of dislocation motionthe case of silicon, Philos. Mag. A, 81, 5, 1257-1281 (2001)
[17] Brune, James N., Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 26, 4997-5009 (1970)
[18] Crescentini, Luca; Amoruso, Antonella; Scarpa, Roberto, Constraints on slow earthquake dynamics from a swarm in central Italy, Science, 286, 5447, 2132-2134 (1999)
[19] Cai, Wei; Arsenlis, Athanasios; Weinberger, Christopher R.; Bulatov, Vasily V., A non-singular continuum theory of dislocations, J. Mech. Phys. Solids, 54, 3, 561-587 (2006) · Zbl 1120.74329
[20] Carpio, A.; Chapman, S. J.; Howison, S. D.; Ockendon, J. R., Dynamics of line singularities, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 355, 1731, 2013-2024 (1997) · Zbl 0899.76065
[21] Chen, Yong S.; Choi, Woosong; Papanikolaou, Stefanos; Bierbaum, Matthew; Sethna, James P., Scaling theory of continuum dislocation dynamics in three dimensionsself-organized fractal pattern formation, Int. J. Plast., 46, 94-129 (2013)
[22] Carpio, Ana; Jonathan Chapman, S.; Velázquez, J. J.L., Pile-up solutions for some systems of conservation laws modelling dislocation interaction in crystals, SIAM J. Appl. Math., 61, 6, 2168-2199 (2001) · Zbl 0982.35124
[23] Carr, Jack.; Pego, Robert. L., Metastable patterns in solutions of \(u_t = \epsilon^2 u_{xx} - f(u)\), Commun. Pure Appl. Math., 42, 5, 523-576 (1989) · Zbl 0685.35054
[24] Das, Amit; Acharya, Amit; Zimmer, Johannes; Matthies, Karsten, Can equations of equilibrium predict all physical equilibria? A case study from Field Dislocation Mechanics, Math. Mech. Solids, 18, 801-820 (2013)
[25] Day, Steven M.; Dalguer, Luis A.; Lapusta, Nadia; Liu, Yi, Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture, J. Geophys. Res.: Solid Earth 1978-2012, 110, B12 (2005)
[26] Denoual, Christophe, Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods, Phys. Rev. B, 70, 2, 024106 (2004)
[27] Eshelby, J. D.; Frank, F. C.; Nabarro, F. R.N., The equilibrium of linear arrays of dislocations, Philos. Mag., 42, 327, 351-364 (1951) · Zbl 0042.22704
[28] Fressengeas, C.; Acharya, A.; Beaudoin, A. J., Dislocation mediated continuum plasticity: case studies on modeling scale dependence, scale-invariance, and directionality of sharp yield-point, (Ghosh, S.; Dimiduk, D. M., Computational Methods for Microstructure-Property Relationships (2011), Springer: Springer New York, Dordrecht, Heidelberg, London)
[29] Fox, N., A continuum theory of dislocations for single crystals, IMA J. Appl. Math., 2, 4, 285-298 (1966)
[30] Freund, L. B., Dynamic Fracture Mechanics (1998), Cambridge University Press · Zbl 0712.73072
[31] Garg, Akanksha; Acharya, Amit; Maloney, Craig E., A study of conditions for dislocation nucleation in coarser-than-atomistic scale models, J. Mech. Phys. Solids, 75, 76-92 (2015)
[32] Gumbsch, P.; Gao, H., Dislocations faster than the speed of sound, Science, 283, 5404, 965-968 (1999)
[33] Gurrutxaga-Lerma, Benat; Balint, Daniel S.; Dini, Daniele; Eakins, Daniel E.; Sutton, Adrian P., A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 2156 (2013) · Zbl 1371.74052
[34] Guduru, P. R.; Rosakis, A. J.; Ravichandran, G., Dynamic shear bandsan investigation using high speed optical and infrared diagnostics, Mech. Mater., 33, 7, 371-402 (2001)
[35] Heaton, Thomas H., Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet. Inter., 64, 1, 1-20 (1990)
[36] Hirth, John P.; Lothe, Jens, Theory of Dislocations (1982), John Wiley & Sons: John Wiley & Sons New York, US · Zbl 1365.82001
[37] Hirth, J. P.; Zbib, H. M.; Lothe, J., Forces on high velocity dislocations, Model. Simul. Mater. Sci. Eng., 6, 2, 165 (1998)
[38] Iyer, Mrinal; Radhakrishna, Balachandran; Gavini, Vikram, Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics, J. Mech. Phys. Solids, 76, 260-275 (2015)
[39] Kang, Keonwook; Bulatov, Vasily V.; Cai, Wei, Singular orientations and faceted motion of dislocations in body-centered cubic crystals, Proc. Natl. Acad. Sci., 109, 38, 15174-15178 (2012)
[40] Kubin, Ladislas P.; Canova, G.; Condat, M.; Devincre, Benoit; Pontikis, V.; Bréchet, Yves, Dislocation microstructures and plastic flowa 3d simulation, Solid State Phenom., 23, 455-472 (1992)
[41] Koslowski, Marisol; Cuitino, Alberto M.; Ortiz, Michael, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50, 12, 2597-2635 (2002) · Zbl 1094.74563
[42] Kröner, Ekkehart, Continuum theory of defects, (Balian, R.; Kleman, M.; etal., Physics of Defects, Les-Houches Summer School (1981), North-Holland: North-Holland Amsterdam), 217-315
[43] Kalthoff, J. F.; Winkler, S., Failure mode transitions at high rates of loading, (Meyer, L. W.; Chiem, C. Y.; Kunze, H. D., Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials (1988), DeutscheGesselschaft fur Metallkunde: DeutscheGesselschaft fur Metallkunde Dresden Germany), 43-56
[44] Lothe, J.; Hirth, J. P., Dislocation dynamics at low temperatures, Phys. Rev., 115, 3, 543 (1959) · Zbl 0096.45303
[45] Lu, Gang; Kioussis, Nicholas; Bulatov, Vasily V.; Kaxiras, Efthimios, The Peierls-Nabarro model revisited, Philos. Mag. Lett., 80, 10, 675-682 (2000)
[46] Limkumnerd, Surachate; Sethna, James P., Shocks and slip systemspredictions from a mesoscale theory of continuum dislocation dynamics, J. Mech. Phys. Solids, 56, 4, 1450-1459 (2008) · Zbl 1171.74315
[47] Lubarda, Vlado A., Elastoplasticity Theory (2001), CRC press: CRC press Boca Raton, London, New York, Washingto n DC · Zbl 1014.74001
[48] Markenscoff, Xanthippi, Comment on dynamic Peierls-Nabarro equations for elastically isotropic crystals, Phys. Rev. B, 83, 5, 056101 (2011)
[49] Movchan, A. B.; Bullough, R.; Willis, J. R., Stability of a dislocationdiscrete model, Eur. J. Appl. Math., 9, 04, 373-396 (1998) · Zbl 0921.73229
[50] Marchand, A.; Duffy, J., An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36, 3, 251-283 (1988)
[51] Medyanik, Sergey N.; Liu, Wing Kam; Li, Shaofan, On criteria for dynamic adiabatic shear band propagation, J. Mech. Phys. Solids, 55, 7, 1439-1461 (2007) · Zbl 1238.74024
[52] Miller, Ron; Phillips, Rob; Beltz, Glen; Ortiz, Michael, A non-local formulation of the Peierls dislocation model, J. Mech. Phys. Solids, 46, 10, 1845-1867 (1998) · Zbl 0968.74011
[53] Mura, T., Continuous distribution of moving dislocations, Philos. Mag., 8, 89, 843-857 (1963)
[54] Nabarro, F. R.N., Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59, 2, 256 (1947)
[55] Nabarro, F. R.N., Theory of Crystal Dislocations (1987), Dover: Dover Oxford, UK
[56] Nicks, Rachel; Parry, Gareth, Group elastic symmetries common to continuum and discrete defective crystals, J. Elast., 115, 2, 131-156 (2014) · Zbl 1408.74007
[57] Parry, Gareth P., Elastic symmetries of defective crystals, J. Elast., 101, 1, 101-120 (2010) · Zbl 1294.74006
[58] Puri, Saurabh; Das, Amit; Acharya, Amit, Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics, J. Mech. Phys. Solids, 59, 11, 2400-2417 (2011) · Zbl 1270.74154
[60] Peierls, R., The size of a dislocation, Proc. Phys. Soc., 52, 1, 34-37 (1940)
[61] Pellegrini, Yves-Patrick, Dynamic Peierls-Nabarro equations for elastically isotropic crystals, Phys. Rev. B, 81, 2, 024101 (2010)
[62] Pellegrini, Yves-Patrick, Reply to comment on dynamic Peierls-Nabarro equations for elastically isotropic crystals, Phys. Rev. B, 83, 5, 056102 (2011)
[63] Picu, R. C., The Peierls stress in non-local elasticity, J. Mech. Phys. Solids, 50, 4, 717-735 (2002) · Zbl 1041.74004
[64] Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr, Singularity-free dislocation dynamics with strain gradient elasticity, J. Mech. Phys. Solids, 68, 161-178 (2014) · Zbl 1328.74016
[65] Roy, Anish; Acharya, Amit, Size effects and idealized dislocation microstructure at small scalespredictions of a phenomenological model of mesoscopic field dislocation mechanics: Part II, J. Mech. Phys. Solids, 54, 8, 1711-1743 (2006) · Zbl 1120.74333
[68] Rubinstein, Shmuel M.; Cohen, Gil; Fineberg, Jay, Detachment fronts and the onset of dynamic friction, Nature, 430, 7003, 1005-1009 (2004)
[69] Rice, James R., Inelastic constitutive relations for solidsan internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 6, 433-455 (1971) · Zbl 0235.73002
[71] Rodney, D.; Le Bouar, Y.; Finel, A., Phase field methods and dislocations, Acta Mater., 51, 1, 17-30 (2003)
[72] Rosakis, A. J.; Samudrala, O.; Coker, D., Cracks faster than the shear wave speed, Science, 284, 5418, 1337-1340 (1999)
[73] Schoeck, G., Peierls energy of dislocationsa critical assessment, Phys. Rev. Lett., 82, 11, 2310 (1999)
[74] Shen, C.; Wang, Y., Phase field model of dislocation networks, Acta Mater., 51, 9, 2595-2610 (2003)
[75] Varadhan, S. N.; Beaudoin, A. J.; Acharya, A.; Fressengeas, C., Dislocation transport using an explicit Galerkin/Least-squares formulation, Model. Simul. Mater. Sci. Eng., 14, 7, 1245 (2006)
[76] Vitek, V., Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., 18, 154, 773-786 (1968)
[77] Wood, W. W.; Head, A. K., The motion of dislocations, Proc. R. Soc. Lond. A: Math. Phys. Sci., 336, 1605, 191-209 (1974) · Zbl 0288.73081
[78] Willis, J. R., Dislocations and inclusions, J. Mech. Phys. Solids, 13, 6, 377-395 (1965)
[79] Willis, John R., Second-order effects of dislocations in anisotropic crystals, Int. J. Eng. Sci., 5, 2, 171-190 (1967) · Zbl 0147.43506
[80] Wang, Yu U.; Jin, Y. M.; Cuitino, A. M.; Khachaturyan, A. G., Nanoscale phase field microelasticity theory of dislocationsmodel and 3d simulations, Acta Mater., 49, 10, 1847-1857 (2001)
[81] Wang, Yunzhi; Li, Ju, Phase field modeling of defects and deformation, Acta Mater., 58, 4, 1212-1235 (2010)
[82] Xiang, Yang; Cheng, Li-Tien; Srolovitz, David J.; Weinan, E., A level set method for dislocation dynamics, Acta Mater., 51, 18, 5499-5518 (2003)
[83] Zhang, Z.; Clifton, R. J., Shear band propagation from a crack tip, J. Mech. Phys. Solids, 51, 11, 1903-1922 (2003)
[84] Zimmer, Johannes, Stored energy functions for phase transitions in crystals, Arch. Ration. Mech. Anal., 172, 2, 191-212 (2004) · Zbl 1063.74076
[85] Zhou, M.; Ravichandran, G.; Rosakis, A. J., Dynamically propagating shear bands in impact-loaded prenotched II. Numerical simulations, J. Mech. Phys. Solids, 44, 6, 1007-1032 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.