×

An adaptive multilevel Monte Carlo algorithm for the stochastic drift-diffusion-Poisson system. (English) Zbl 1462.65166

Summary: We present an adaptive multilevel Monte Carlo algorithm for solving the stochastic drift-diffusion-Poisson system with non-zero recombination rate. The a-posteriori error is estimated to enable goal-oriented adaptive mesh refinement for the spatial dimensions, while the a-priori error is estimated to guarantee linear convergence of the \(H^1\) error. In the adaptive mesh refinement, efficient estimation of the error indicator gives rise to better error control. For the stochastic dimensions, we use the multilevel Monte Carlo method to solve this system of stochastic partial differential equations. Finally, the advantage of the technique developed here compared to uniform mesh refinement is discussed using a realistic numerical example.

MSC:

65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
82D37 Statistical mechanics of semiconductors
65C30 Numerical solutions to stochastic differential and integral equations

Software:

ALEA

References:

[1] Gerrer, L.; Markov, S.; Amoroso, S. M.; Adamu-Lema, F.; Asenov, A., Impact of random dopant fluctuations on trap-assisted tunnelling in nanoscale MOSFETs, Microelectron. Reliab., 52, 9-10, 1918-1923 (2012)
[2] Markov, S.; Cheng, B.; Asenov, A., Statistical variability in fully depleted SOI MOSFETs due to random dopant fluctuations in the source and drain extensions, IEEE Electron Device Lett., 33, 3, 315-317 (2012)
[3] Lee, J.; Berrada, S.; Carrillo-Nunez, H.; Medina-Bailon, C.; Adamu-Lema, F.; Georgiev, V. P.; Asenov, A., The impact of dopant diffusion on random dopant fluctuation in Si nanowire FETs: A quantum transport study, (2018 International Conference on Simulation of Semiconductor Processes and Devices. 2018 International Conference on Simulation of Semiconductor Processes and Devices, SISPAD (2018), IEEE), 280-283
[4] Ainsworth, M.; Oden, J., A Posteriori Error Estimation in Finite Element Analysis, Vol. 37 (2011), John Wiley & Sons
[5] Szabo, B. A.; Babuška, I., Finite Element Analysis (1991), John Wiley & Sons · Zbl 0792.73003
[6] Ainsworth, M.; Oden, J., A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg., 142, 1-2, 1-88 (1997) · Zbl 0895.76040
[7] Barth, A.; Schwab, C.; Zollinger, N., Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119, 1, 123-161 (2011) · Zbl 1230.65006
[8] Cliffe, K. A.; Giles, M. B.; Scheichl, R.; Teckentrup, A. L., Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14, 1, 3 (2011) · Zbl 1241.65012
[9] Khodadadian, A.; Parvizi, M.; Abbaszadeh, M.; Dehghan, M.; Heitzinger, C., A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation, Comput. Mech., 64, 4, 937-949 (2019) · Zbl 1465.76076
[10] Taghizadeh, L.; Khodadadian, A.; Heitzinger, C., The optimal multilevel Monte-Carlo approximation of the stochastic drift-diffusion-Poisson system, Comput. Methods Appl. Mech. Engrg., 318, 739-761 (2017) · Zbl 1439.65218
[11] Khodadadian, A.; Taghizadeh, L.; Heitzinger, C., Three-dimensional optimal multi-level Monte-Carlo approximation of the stochastic drift-diffusion-Poisson system in nanoscale devices, J. Comput. Electron., 17, 1, 76-89 (2018)
[12] Giles, M. B.; Waterhouse, B. J., Multilevel quasi-Monte Carlo path simulation, (Advanced Financial Modelling. Advanced Financial Modelling, Radon Series on Computational and Applied Mathematics (2009)), 165-181 · Zbl 1181.91335
[13] Khodadadian, A.; Taghizadeh, L.; Heitzinger, C., Optimal multilevel randomized quasi-Monte-Carlo method for the stochastic drift-diffusion-Poisson system, Comput. Methods Appl. Mech. Engrg., 329, 480-497 (2018) · Zbl 1439.65007
[14] Cockburn, B.; Triandaf, I., Convergence of a finite element method for the drift-diffusion semiconductor device equations: the zero diffusion case, Math. Comp., 59, 200, 383-401 (1992) · Zbl 0768.65071
[15] Chen, Z.; Cockburn, B., Analysis of a finite element method for the drift-diffusion semiconductor device equations: the multidimensional case, Numer. Math., 71, 1, 1-28 (1995) · Zbl 0830.65116
[16] Jerome, J. W.; Kerkhoven, T., A finite element approximation theory for the drift diffusion semiconductor model, SIAM J. Numer. Anal., 28, 2, 403-422 (1991) · Zbl 0725.65120
[17] Jerome, J. W., The approximation problem for drift-diffusion systems, SIAM Rev., 37, 4, 552-572 (1995) · Zbl 0857.65121
[18] Eigel, M.; Gittelson, C. J.; Schwab, C.; Zander, E., Adaptive stochastic Galerkin FEM, Comput. Methods Appl. Mech. Engrg., 270, 247-269 (2014) · Zbl 1296.65157
[19] Hoel, H.; Von Schwerin, E.; Szepessy, A.; Tempone, R., Implementation and analysis of an adaptive multilevel Monte Carlo algorithm, Monte Carlo Methods Appl., 20, 1, 1-41 (2014) · Zbl 1284.65011
[20] Eigel, M.; Merdon, C.; Neumann, J., An adaptive multilevel Monte Carlo method with stochastic bounds for quantities of interest with uncertain data, SIAM/ASA J. Uncertain. Quantif., 4, 1, 1219-1245 (2016) · Zbl 1398.35306
[21] Dehghan, M.; Abbaszadeh, M., Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional brusselator reaction-diffusion system with and without cross-diffusion, Comput. Methods Appl. Mech. Engrg., 300, 770-797 (2016) · Zbl 1425.65108
[22] Dehghan, M.; Abbaszadeh, M., A local meshless method for solving multi-dimensional Vlasov-Poisson and Vlasov-Poisson-Fokker-Planck systems arising in plasma physics, Eng. Comput., 33, 4, 961-981 (2017)
[23] Dehghan, M.; Shirzadi, M., A meshless method based on the dual reciprocity method for one-dimensional stochastic partial differential equations, Numer. Methods Partial Differential Equations, 32, 1, 292-306 (2016) · Zbl 1337.65010
[24] Dehghan, M.; Shirzadi, M., Meshless simulation of stochastic advection-diffusion equations based on radial basis functions, Eng. Anal. Bound. Elem., 53, 18-26 (2015) · Zbl 1403.65086
[25] Abbaszadeh, M.; Khodadadian, A.; Parvizi, M.; Dehghan, M.; Heitzinger, C., A direct meshless local collocation method for solving stochastic Cahn-Hilliard-Cook and stochastic Swift-Hohenberg equations, Eng. Anal. Bound. Elem., 98, 253-264 (2019) · Zbl 1404.65207
[26] Abbaszadeh, M.; Dehghan, M.; Khodadadian, A.; Heitzinger, C., Analysis and application of the interpolating element free Galerkin (IEFG) method to simulate the prevention of groundwater contamination with application in fluid flow, J. Comput. Appl. Math., 368, 112453 (2020) · Zbl 1433.65233
[27] Heitzinger, S. B.A. C., Existence and local uniqueness for 3D self-consistent multiscale models for field-effect sensors, Commun. Math. Sci., 10, 2, 693-716 (2012) · Zbl 1283.35036
[28] Khodadadian, A.; Heitzinger, C., A transport equation for confined structures applied to the OprP, Gramicidin A, and KcsA channels, J. Comput. Electron., 14, 2, 524-532 (2015)
[29] Khodadadian, A.; Heitzinger, C., Basis adaptation for the stochastic nonlinear Poisson-Boltzmann equation, J. Comput. Electron., 15, 4, 1393-1406 (2016)
[30] Khodadadian, A.; Hosseini, K.; Manzour-ol Ajdad, A.; Hedayati, M.; Kalantarinejad, R.; Heitzinger, C., Optimal design of nanowire field-effect troponin sensors, Comput. Biol. Med., 87, 46-56 (2017)
[31] Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-ol Ajdad, A.; Kalantarinejad, R.; Heitzinger, C., A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters, Biosens. Bioelectron., 142, 111527 (2019)
[32] Khodadadian, A.; Stadlbauer, B.; Heitzinger, C., Bayesian Inversion for nanowire field-effect sensors, J. Comput. Electron., 19, 1, 147-159 (2020)
[33] Zlámal, M., Finite element solution of the fundamental equations of semiconductor devices. I, Math. Comp., 46, 173, 27-43 (1986) · Zbl 0609.65089
[34] Brenner, S.; Scott, R., The Mathematical Theory of Finite Element Methods, Vol. 15 (2007), Springer Science & Business Media
[35] Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124 (1996) · Zbl 0854.65090
[36] Taur, Y.; Liang, X.; Wang, W.; Lu, H., A continuous, analytic drain-current model for DG MOSFETs, IEEE Electron Device Lett., 25, 2, 107-109 (2004)
[37] Wong, H.-S.; Chan, K. K.; Taur, Y., Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel, (Electron Devices Meeting, 1997. IEDM’97. Technical Digest., International (1997), IEEE), 427-430
[38] Munteanu, D.; Autran, J.-L.; Loussier, X.; Harrison, S.; Cerutti, R.; Skotnicki, T., Quantum short-channel compact modelling of drain-current in double-gate MOSFET, Solid-State Electron., 50, 4, 680-686 (2006)
[39] Chen, D.; Wei, G.-W., Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices, J. Comput. Phys., 229, 12, 4431-4460 (2010) · Zbl 1191.82113
[40] Charrier, J.; Scheichl, R.; Teckentrup, A. L., Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods, SIAM J. Numer. Anal., 51, 1, 322-352 (2013) · Zbl 1273.65008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.