×

Isoperimetric Hardy type and Poincaré inequalities on metric spaces. (English) Zbl 1195.46035

Laptev, Ari (ed.), Around the research of Vladimir Maz’ya. I. Function spaces. Dordrecht: Springer; Novosibirsk: Tamara Rozhkovskaya Publisher (ISBN 978-1-4419-1340-1/hbk; 978-1-4419-1341-8/ebook; 978-5-9018-7341-0/hbk). International Mathematical Series (New York) 11, 285-298 (2010).
Summary: We give a general construction of manifolds for which Hardy type operators characterize Poincaré inequalities. We also show a class of spaces where this property fails. As an application, we extend recent results of E.Milman to our setting.
For the entire collection see [Zbl 1180.47001].

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
30L99 Analysis on metric spaces
58J99 Partial differential equations on manifolds; differential operators

References:

[1] Barthe, F.; Cattiaux, P.; Roberto, C., Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoam., 22, 993-1067 (2006) · Zbl 1118.26014
[2] Bastero. J., Milman, M., Ruiz, F., A note on L(��, q) spaces and Sobolev embeddings. Indiana Univ, Math. J., 52, 1215-1230 (2003) · Zbl 1098.46023
[3] Bennett, C.; DeVore, R.; Sharpley, R., Weak L^∞ and BMO, Ann. Math., 113, 601-611 (1981) · Zbl 0465.42015 · doi:10.2307/2006999
[4] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Boston: Academic Press, Boston · Zbl 0647.46057
[5] Bobkov, SG, Extremal properties of half-spaces for log-concave distributions, Ann. Probab., 24, 35-48 (1996) · Zbl 0859.60048 · doi:10.1214/aop/1042644706
[6] Bobkov, SG; Houdré, C., Some connections between isoperimetric and Sobolev type inequalities, Mem. Am. Math. Soc., 129, 616 (1997) · Zbl 0886.49033
[7] Borell, C.: Intrinsic bounds on some real-valued stationary random functions. In: Lect. Notes Math. 1153, pp. 72-95. Springer (1985) · Zbl 0607.60067
[8] Ehrhard, A., Symétrisation dans le space de Gauss, Math. Scand., 53, 281-301 (1983) · Zbl 0542.60003
[9] Federer, H.: Geometric Measure Theory. Springer, Berlin (1969) · Zbl 0176.00801
[10] Gallot, S., Inégalités isopérimétriques et analytiques sur les variétés riemanniennes, Astérisque., 163-164, 31-91 (1988) · Zbl 0674.53001
[11] Hajlasz, P.; Koskela, P., Isoperimetric inequalities and Imbedding theorems in irregular domains, J. London Math. Soc., 58, 425-450 (1998) · Zbl 0922.46034 · doi:10.1112/S0024610798006346
[12] Kilpeläinen, T.; Malý, J., Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwen., 19, 369-380 (2000) · Zbl 0959.46020
[13] Martín, J.; Milman, M., Self improving Sobolev-Poincaré inequalities, truncation and symmetrization, Potential Anal., 29, 391-408 (2008) · Zbl 1166.46014 · doi:10.1007/s11118-008-9102-8
[14] Martín, J.; Milman, M., Isoperimetry and Symmetrization for Logarithmic Sobolev inequalities, J. Funct. Anal., 256, 149-178 (2009) · Zbl 1173.26010 · doi:10.1016/j.jfa.2008.09.001
[15] Martín, J.; Milman, M., Isoperimetry and symmetrization for Sobolev spaces on metric spaces, Compt. Rend. Math., 347, 627-630 (2009) · Zbl 1176.46039 · doi:10.1016/j.crma.2009.04.011
[16] Martín, J., Milman (2009), Pointwise Symmetrization Inequalities for Sobolev Functions and Applications. Preprint: M., Pointwise Symmetrization Inequalities for Sobolev Functions and Applications. Preprint
[17] Martín, J.; Milman, M.; Pustylnik, E., Sobolev inequalities: Symmetrization and self-improvement via truncation, J. Funct. Anal., 252, 677-695 (2007) · Zbl 1136.46031 · doi:10.1016/j.jfa.2007.05.017
[18] Maz’ya, VG, Classes of domains and imbedding theorems for function spaces (Russian), Dokl. Akad. Nauk SSSR 3, 527-530 (1960); English transl.: Sov. Math. Dokl., 1, 882-885 (1961) · Zbl 0114.31001
[19] Maz’ya, VG, Weak solutions of the Dirichlet and Neumann problems (Russian), Tr. Mosk. Mat. O-va., 20, 137-172 (1969) · Zbl 0179.43302
[20] Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin etc. (1985) · Zbl 0727.46017
[21] Maz’ya, VG, Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev type imbeddings, J. Funct. Anal., 224, 408-430 (2005) · Zbl 1105.46017 · doi:10.1016/j.jfa.2004.09.009
[22] Milman, E., Concentration and isoperimetry are equivalent assuming curvature lower bound, C. R. Math. Acad. Sci. Paris, 347, 73-76 (2009) · Zbl 1156.53022
[23] Milman, E., On the role of Convexity in Isoperimetry, Spectral-Gap and Concentration, Invent. Math., 177, 1-43 (2009) · Zbl 1181.52008 · doi:10.1007/s00222-009-0175-9
[24] Milman, E., On the role of convexity in functional and isoperimetric inequalities, Proc. London Math. Soc., 99, 32-66 (2009) · Zbl 1221.32004 · doi:10.1112/plms/pdn045
[25] Pustylnik, E., A rearrangement-invariant function set that appears in optimal Sobolev embeddings, J. Math. Anal. Appl., 344, 788-798 (2008) · Zbl 1157.46017 · doi:10.1016/j.jmaa.2008.03.029
[26] Ros, A.: The isoperimetric problem. In: Global Theory of Minimal Surfaces. Clay Math. Proc. Vol. 2, pp. 175-209. Am. Math. Soc., Providence, RI (2005) · Zbl 1125.49034
[27] Talenti, G., Elliptic Equations and Rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3, 697-718 (1976) · Zbl 0341.35031
[28] Talenti, G., Inequalities in rearrangement-invariant function spaces. In: Nonlinear Analysis, Function Spaces and Applications 5, 177-230 (1995), Prague: Prometheus, Prague · Zbl 0872.46020
[29] Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez B Artic. Ric. Mat., 8, 479-500 (1998) · Zbl 0929.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.