×

The EFT likelihood for large-scale structure. (English) Zbl 1491.85003


MSC:

85A15 Galactic and stellar structure
30D40 Cluster sets, prime ends, boundary behavior
81T20 Quantum field theory on curved space or space-time backgrounds
81T12 Effective quantum field theories
93A15 Large-scale systems
00A71 General theory of mathematical modeling
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
62F15 Bayesian inference
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] F. Schmidt, F. Elsner, J. Jasche, N.M. Nguyen and G. Lavaux, 2019 A rigorous EFT-based forward model for large-scale structure J. Cosmol. Astropart. Phys.2019 01 042 [1808.02002] · Zbl 1542.85007
[2] V. Desjacques, D. Jeong and F. Schmidt, 2018 Large-Scale Galaxy Bias, https://doi.org/10.1016/j.physrep.2017.12.002 Phys. Rept.733 1 [1611.09787] · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[3] K. Fisher, O. Lahav, Y. Hoffman, D. Lynden-Bell and S. Zaroubi, 1995 Wiener reconstruction of density, velocity and potential fields from all-sky galaxy redshift surveys, https://doi.org/10.1093/mnras/272.4.885 Mon. Not. Roy. Astron. Soc.272 885 [astro-ph/9406009] · doi:10.1093/mnras/272.4.885
[4] J. Jasche, F.S. Kitaura, B.D. Wandelt and T.A. Enßlin, 2010 Bayesian power-spectrum inference for Large Scale Structure data, https://doi.org/10.1111/j.1365-2966.2010.16610.x Mon. Not. Roy. Astron. Soc.406 60 [0911.2493] · doi:10.1111/j.1365-2966.2010.16610.x
[5] J. Jasche, F.S. Kitaura, C. Li and T.A. Enßlin, 2010 Bayesian non-linear large scale structure inference of the Sloan Digital Sky Survey data release 7, https://doi.org/10.1111/j.1365-2966.2010.17313.x Mon. Not. Roy. Astron. Soc.409 355 [0911.2498] · doi:10.1111/j.1365-2966.2010.17313.x
[6] J. Jasche and B.D. Wandelt, 2013 Bayesian physical reconstruction of initial conditions from large scale structure surveys, https://doi.org/10.1093/mnras/stt449 Mon. Not. Roy. Astron. Soc.432 894 [1203.3639] · doi:10.1093/mnras/stt449
[7] H. Wang, H.J. Mo, X. Yang, Y.P. Jing and W.P. Lin, 2014 ELUCID — Exploring the Local Universe with reConstructed Initial Density field I: Hamiltonian Markov Chain Monte Carlo Method with Particle Mesh Dynamics, https://doi.org/10.1088/0004-637X/794/1/94 Astrophys. J.794 94 [1407.3451] · doi:10.1088/0004-637X/794/1/94
[8] M. Ata, F.-S. Kitaura and V. Müller, 2015 Bayesian inference of cosmic density fields from non-linear, scale-dependent and stochastic biased tracers, https://doi.org/10.1093/mnras/stu2347 Mon. Not. Roy. Astron. Soc.446 4250 [1408.2566] · doi:10.1093/mnras/stu2347
[9] E. Bertschinger and A. Dekel, 1989 Recovering the full velocity and density fields from large-scale redshift-distance samples, https://doi.org/10.1086/185348 Astrophys. J.336 L5 · doi:10.1086/185348
[10] M. Schmittfull, T. Baldauf and M. Zaldarriaga, 2017 Iterative initial condition reconstruction, https://doi.org/10.1103/PhysRevD.96.023505 Phys. Rev. D 96 023505 [1704.06634] · doi:10.1103/PhysRevD.96.023505
[11] U. Seljak, G. Aslanyan, Y. Feng and C. Modi, 2017 Towards optimal extraction of cosmological information from nonlinear data J. Cosmol. Astropart. Phys.2017 12 009 [1706.06645] · Zbl 1515.85037
[12] C. Modi, M. White, A. Slosar and E. Castorina, 2019 Reconstructing large-scale structure with neutral hydrogen surveys J. Cosmol. Astropart. Phys.2019 11 023 [1907.02330]
[13] S.M. Carroll, S. Leichenauer and J. Pollack, 2014 Consistent effective theory of long-wavelength cosmological perturbations, https://doi.org/10.1103/PhysRevD.90.023518 Phys. Rev. D 90 023518 [1310.2920] · doi:10.1103/PhysRevD.90.023518
[14] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism J. Cosmol. Astropart. Phys.2016 07 052 [1512.05807]
[15] D. Blas, M. Garny, M.M. Ivanov and S. Sibiryakov, 2016 Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation J. Cosmol. Astropart. Phys.2016 07 028 [1605.02149]
[16] P. McDonald and Z. Vlah, 2018 Large-scale structure perturbation theory without losing stream crossing, https://doi.org/10.1103/PhysRevD.97.023508 Phys. Rev. D 97 023508 [1709.02834] · doi:10.1103/PhysRevD.97.023508
[17] F. Elsner, F. Schmidt, J. Jasche, G. Lavaux and N.-M. Nguyen, 2020 Cosmology inference from a biased density field using the EFT-based likelihood J. Cosmol. Astropart. Phys.2020 01 029 [1906.07143] · Zbl 1489.85007
[18] R. Scoccimarro, E. Sefusatti and M. Zaldarriaga, 2004 Probing primordial non-Gaussianity with large-scale structure, https://doi.org/10.1103/PhysRevD.69.103513 Phys. Rev. D 69 103513 [astro-ph/0312286] · doi:10.1103/PhysRevD.69.103513
[19] T. Baldauf, U. Seljak and L. Senatore, 2011 Primordial non-Gaussianity in the Bispectrum of the Halo Density Field J. Cosmol. Astropart. Phys.2011 04 006 [1011.1513]
[20] V. Assassi, D. Baumann and F. Schmidt, 2015 Galaxy Bias and Primordial Non-Gaussianity J. Cosmol. Astropart. Phys.2015 12 043 [1510.03723]
[21] M. Mirbabayi, F. Schmidt and M. Zaldarriaga, 2015 Biased Tracers and Time Evolution J. Cosmol. Astropart. Phys.2015 07 030 [1412.5169]
[22] L. Senatore, 2015 Bias in the Effective Field Theory of Large Scale Structures J. Cosmol. Astropart. Phys.2015 11 007 [1406.7843]
[23] J. Zinn-Justin, 2002 Quantum field theory and critical phenomena Int Ser. Monogr. Phys.113 1
[24] M.E. Peskin and D.V. Schroeder, 1995 An Introduction to quantum field theory, Addison-Wesley, Reading U.S.A.
[25] D. Skinner, 2018 Quantum Field Theory II, http://www.damtp.cam.ac.uk/user/dbs26/AQFT.html
[26] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, 2012 Cosmological Non-Linearities as an Effective Fluid J. Cosmol. Astropart. Phys.2012 07 051 [1004.2488]
[27] P. McDonald, 2006 Clustering of dark matter tracers: Renormalizing the bias parameters, https://doi.org/10.1103/PhysRevD.74.103512 Phys. Rev. D 74 103512 [Erratum ibid D 74 (2006) 129901] [astro-ph/0609413] · doi:10.1103/PhysRevD.74.103512
[28] V. Assassi, D. Baumann, D. Green and M. Zaldarriaga, 2014 Renormalized Halo Bias J. Cosmol. Astropart. Phys.2014 08 056 [1402.5916]
[29] A.A. Abolhasani, M. Mirbabayi and E. Pajer, 2016 Systematic Renormalization of the Effective Theory of Large Scale Structure J. Cosmol. Astropart. Phys.2016 05 063 [1509.07886]
[30] A. Perko, L. Senatore, E. Jennings and R.H. Wechsler, Biased Tracers in Redshift Space in the EFT of Large-Scale Structure, [1610.09321]
[31] Z. Ding, H.-J. Seo, Z. Vlah, Y. Feng, M. Schmittfull and F. Beutler, 2018 Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys, https://doi.org/10.1093/mnras/sty1413 Mon. Not. Roy. Astron. Soc.479 1021 [1708.01297] · doi:10.1093/mnras/sty1413
[32] L.F. de la Bella, D. Regan, D. Seery and D. Parkinson, Impact of bias and redshift-space modelling for the halo power spectrum: Testing the effective field theory of large-scale structure, [1805.12394] · Zbl 1492.85012
[33] V. Desjacques, D. Jeong and F. Schmidt, 2018 The Galaxy Power Spectrum and Bispectrum in Redshift Space J. Cosmol. Astropart. Phys.2018 12 035 [1806.04015] · Zbl 1536.83163
[34] L. Senatore, S. Tassev and M. Zaldarriaga, 2009 Cosmological Perturbations at Second Order and Recombination Perturbed J. Cosmol. Astropart. Phys.2009 08 031 [0812.3652]
[35] L. Senatore, S. Tassev and M. Zaldarriaga, 2009 Non-Gaussianities from Perturbing Recombination J. Cosmol. Astropart. Phys.2009 09 038 [0812.3658]
[36] E. Pajer and M. Zaldarriaga, 2013 On the Renormalization of the Effective Field Theory of Large Scale Structures J. Cosmol. Astropart. Phys.2013 08 037 [1301.7182]
[37] M.D. Schwartz, 2014 Quantum Field Theory and the Standard Model, Cambridge University Press, Cambridge U.K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.