×

A representation theorem for fuzzy pseudometrics. (English) Zbl 1255.54014

Since the inception of the notion of fuzzy set in [L. A. Zadeh, Inf. Control 8, 338–365 (1965; Zbl 0139.24606)], there were many attempts to come up with a proper fuzzification of metric spaces. In particular, [I. Kramosil and J. Michalek, Kybernetika, Praha 11, 336–344 (1975; Zbl 0319.54002)] presented the notion of fuzzy metric, which was inspired by the already existing theory of probabilistic metric spaces [B. Schweizer and A. Sklar, Pac. J. Math. 10, 313–334 (1960; Zbl 0091.29801)]. Motivated by the former concept, the paper under review introduces the notion of KM-fuzzy pseudometric space (“KM” is the abbreviation for “I. Kramosil and J. Michalek”), which is a triple \((X,m,T)\), where \(X\) is a non-empty set, \(T\) is a t-norm, and \(m:X\times X\times[0,\infty)\rightarrow[0,1]\) is a map such that for every \(x,y,z\in X\) and every \(t,s\in[0,\infty)\),
(1) \(m(x,y,0)=0\);
(2) \(m(x,x,t)=1\) for every \(t>0\);
(3) \(m(x,y,t)=m(y,x,t)\);
(4) \(T(m(x,y,t),m(y,z,s))\leqslant m(x,z,t+s)\);
(5) \(m(x,y,-):[0,\infty)\rightarrow[0,1]\) is left-continuous, and \(\text{lim}_{t\rightarrow\infty}m(x,y,t)=1\).
If the map \(m\) also satisfies
(6) \(m(x,y,t)=1\) and \(t>0\) imply \(x=y\);
then \((X,m,T)\) is said to be a KM-fuzzy metric space (Definition 2.1 on page 92).
Additionally, given a subset \(I\) of the real line, a family of real-valued maps \(\{d_i\,|\,i\in I\}\) is called lower semicontinuous (LSC, for short) provided that \(d_i=\bigwedge_{j>i}d_j\) for every \(i\in I\) (Definition 3.1 on page 93). With the above two notions in hand, the authors establish a bijection between the set of KM-fuzzy pseudometrics on \(X\) (under the t-norm \(\wedge\))and \([0,1)\)-indexed LSC families of ordinary pseudometrics on \(X\) (Theorem 3.12 on page 95). Moreover, they show that every KM-fuzzy pseudometric space gives rise to a uniform space (resp. topological space), which is separated (resp. Hausdorff) provided that the pseudometric \(m\) in question is a metric (Proposition 4.1, Corollary 4.3 on page 96). It also appears that a family of pseudometrics and its induced KM-fuzzy pseudometric space generate the same uniform and topological structures (Proposition 4.5 on page 97). The manuscript ends with a wish to generalize the obtained results to partial (pseudo)metrics in the sense of [S. G. Matthews, in: Papers on general topology and applications. Papers from the 8th summer conference at Queens College, New York, NY, USA, June 18–20, 1992. New York, NY: The New York Academy of Sciences. Ann. N. Y. Acad. Sci. 728, 183–197 (1994; Zbl 0911.54025)].
The paper is well written, nicely self-contained and is easy to follow, which will certainly benefit the topologically-minded readers of the fuzzy community.

MSC:

54E35 Metric spaces, metrizability
03E72 Theory of fuzzy sets, etc.
06A15 Galois correspondences, closure operators (in relation to ordered sets)
54A40 Fuzzy topology
54E15 Uniform structures and generalizations
54E70 Probabilistic metric spaces
Full Text: DOI

References:

[1] N. Bourbaki, Topologie Générale, Diffusion C.C.L.S., Paris, 1974 (Chapters 1-4).; N. Bourbaki, Topologie Générale, Diffusion C.C.L.S., Paris, 1974 (Chapters 1-4).
[2] N. Bourbaki, Topologie Générale, Diffusion C.C.L.S., Paris, 1974 (Chapters 5-10).; N. Bourbaki, Topologie Générale, Diffusion C.C.L.S., Paris, 1974 (Chapters 5-10).
[3] Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; Scott, D. S., Continuous Lattices and Domains (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1088.06001
[4] M. Demirci, The order-theoretic duality and relations between partial metrics and local equalities, Fuzzy Sets Systems (2011), in press, doi:10.1016/j.fss.2011.04.014; M. Demirci, The order-theoretic duality and relations between partial metrics and local equalities, Fuzzy Sets Systems (2011), in press, doi:10.1016/j.fss.2011.04.014 · Zbl 1244.03143
[5] Deng, Z., Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86, 1, 74-95 (1982) · Zbl 0501.54003
[6] Erceg, M. A., Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69, 1, 205-230 (1979) · Zbl 0409.54007
[7] Erné, M.; Koslowski, J.; Melton, A.; Strecker, G. E., A primer on Galois connections, Annals of the New York Academy of Sciences, 704, 103-125 (1993) · Zbl 0809.06006
[8] Fletcher, P.; Lindgren, W. F., Quasi-uniform Spaces (1982), Marcel Dekker: Marcel Dekker New York · Zbl 0402.54024
[9] Flüshöh, W., On the metrizability of fuzzy neighborhood spaces, Math. Nachr., 166, 105-112 (1994) · Zbl 0831.54011
[10] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets Systems, 64, 3, 395-399 (1994) · Zbl 0843.54014
[11] George, A.; Veeramani, P., Some theorems in fuzzy metric spaces, J. Fuzzy Math., 3, 4, 933-940 (1995) · Zbl 0870.54007
[12] George, A.; Veeramani, P., On some results of analysis for fuzzy metric spaces, Fuzzy Sets Systems, 90, 1, 365-368 (1997) · Zbl 0917.54010
[13] Grabiec, M. T., Fixed points in fuzzy metric spaces, Fuzzy Sets Systems, 27, 3, 385-389 (1988) · Zbl 0664.54032
[14] Gregori, V.; Romaguera, S., Some properties of fuzzy metric spaces, Fuzzy Sets Systems, 115, 3, 485-489 (2000) · Zbl 0985.54007
[15] Gregori, V.; Romaguera, S., Fuzzy quasi-metric spaces, Appl. Gen. Topol., 5, 1, 129-136 (2004) · Zbl 1076.54005
[16] Gregori, V.; Morillas, S.; Sapena, A., On a class of completable fuzzy metric spaces, Fuzzy Sets Systems, 161, 16, 2193-2205 (2010) · Zbl 1201.54011
[17] Gutiérrez García, J.; de Prada Vicente, M. A., Hutton [0,1]-quasi-uniformities induced by fuzzy (quasi-)metric spaces, Fuzzy Sets Systems, 157, 6, 755-766 (2006) · Zbl 1102.54002
[18] Heckmann, R., Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct., 7, 1-2, 71-83 (1999) · Zbl 0993.54029
[19] Kaleva, O.; Seikkala, S., On fuzzy metric spaces, Fuzzy Sets Systems, 12, 3, 215-229 (1984) · Zbl 0558.54003
[20] Kelley, J. L., General Topology, Graduate Texts in Mathematics, vol. 27 (1975), Springer, (reprint of the 1955 ed published by Van Nostrand) · Zbl 0306.54002
[21] Kramosil, I.; Michalek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, 5, 336-344 (1975) · Zbl 0319.54002
[22] Kopperman, R.; Matthews, S.; Pajoohesh, H., Partial metrizability in value quantales, Appl. Gen. Topol., 5, 1, 115-127 (2004) · Zbl 1060.06016
[23] Kunzi, H. P.A.; Pajoohesh, H.; Schellekens, H., Partial quasi-metrics, Theoret. Comput. Sci., 365, 3, 237-246 (2006) · Zbl 1109.54021
[24] S. Matthews, Partial metric topology, in: S. Andima, et al. (Eds.), Proceedings of the 8th Summer Conference on Topology and its Applications, Annals of the New York Academy of Sciences, vol. 728, 1994, pp. 183-197.; S. Matthews, Partial metric topology, in: S. Andima, et al. (Eds.), Proceedings of the 8th Summer Conference on Topology and its Applications, Annals of the New York Academy of Sciences, vol. 728, 1994, pp. 183-197. · Zbl 0911.54025
[25] S. Matthews, A notion of accessibility for topology, in: Abstracts of 22nd Summer Conference on Topology and its Applications, Universitat Jaume I, Castelló, 2007, pp. 99-100.; S. Matthews, A notion of accessibility for topology, in: Abstracts of 22nd Summer Conference on Topology and its Applications, Universitat Jaume I, Castelló, 2007, pp. 99-100.
[26] Menger, K., Statistical metrics, Proc. Natl. Acad. Sci. USA, 28, 535-537 (1942) · Zbl 0063.03886
[27] Morrel, B.; Nagata, J., Statistical metric spaces as related to topological spaces, Gen. Topol. Appl., 9, 3, 233-237 (1978) · Zbl 0412.54008
[28] S.J. O’Neill, Partial metrics, valuation and domain theory, in: Proceedings of 11th Summer Conference on Topology and its Applications, Annals of the New York Academy of Sciences, vol. 806, 1996, pp. 304-315.; S.J. O’Neill, Partial metrics, valuation and domain theory, in: Proceedings of 11th Summer Conference on Topology and its Applications, Annals of the New York Academy of Sciences, vol. 806, 1996, pp. 304-315. · Zbl 0889.54018
[29] Sapena, A., A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol., 2, 1, 63-76 (2001) · Zbl 0985.54006
[30] Schellekens, M. P., A characterization of partial metrizability: domains are quantifiable, Theoret. Comput. Sci., 305, 1-3, 409-432 (2001) · Zbl 1043.54011
[31] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. Math., 10, 1, 314-334 (1960) · Zbl 0091.29801
[32] Schweizer, B.; Sklar, A.; Thorp, E., The metrization of statistical metric spaces, Pacific J. Math., 10, 2, 673-675 (1960) · Zbl 0096.33203
[33] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics (1983), North-Holland Publishing Co.: North-Holland Publishing Co. New York, Amsterdam · Zbl 0546.60010
[34] Thorp, E., Best possible triangle inequalities, Proc. Amer. Math. Soc., 11, 5, 734-740 (1960) · Zbl 0125.37002
[35] Thron, E., Topological Structures (1966), North-Holt, Rinehart and Winston: North-Holt, Rinehart and Winston New York, Chicago, San Francisco, Toronto, London · Zbl 0137.15402
[36] Shi-sheng, Z., Basic theory and applications of probabilistic metric spaces \((I)^⁎\), Appl. Math. Mech., 9, 2, 123-133 (1988), (English Ed.) · Zbl 0731.54023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.