×

Problems of bounding the \(p\)-length and Fitting height of finite soluble groups. (English) Zbl 1505.20012

Summary: This paper is a survey of some open problems and recent results about bounding the Fitting height and \(p\)-length of finite soluble groups. In many problems of finite group theory, nowadays the classification greatly facilitates reduction to soluble groups. Bounding their Fitting height or \(p\)-length can be regarded as further reduction to nilpotent groups. This is usually achieved by methods of representation theory, such as Clifford’s theorem or theorems of Hall-Higman type. In some problems, it is the case of nilpotent groups where open questions remain, in spite of great successes achieved, in particular, by using Lie ring methods. But there are also important questions that still require reduction to nilpotent groups; the present survey is focused on reduction problems of this type. As examples, we discuss finite groups with fixed-point-free and almost fixed-point-free automorphisms, as well as generalizations of the Restricted Burnside Problem. We also discuss results on coset identities, which have applications in the study of profinite groups. Finally, we mention the open problem of bounding the Fitting height in the study of the analogue of the Restricted Burnside Problem for Moufang loops.

MSC:

20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
Full Text: MNR

References:

[1] V. V. Belyaev, B. Hartley, “Centralizers of finite nilpotent subgroups in locally finite groups”, Algebra Logic, 35:4 (1996), 217-228 · Zbl 0870.20025 · doi:10.1007/BF02367023
[2] T. Berger, “Nilpotent fixed point free automorphism groups of solvable groups”, Math. Z., 131 (1973), 305-312 · Zbl 0246.20017 · doi:10.1007/BF01174905
[3] T. R. Berger, F. Gross, “\(2\)-length and the derived length of a Sylow \(2\)-subgroup”, Proc. London Math. Soc. (3), 34 (1977), 520-534 · Zbl 0402.20015 · doi:10.1112/plms/s3-34.3.520
[4] R. Brauer, K. A. Fowler, “On groups of even order”, Ann. Math. (2), 62 (1955), 565-583 · Zbl 0067.01004 · doi:10.2307/1970080
[5] B. Bruno, F. Napolitani, “A note on nilpotent-by-Chernikov groups”, Glasg. Math. J., 46:2 (2004), 211-215 · Zbl 1056.20022 · doi:10.1017/S0017089504001703
[6] E. G. Bryukhanova, “The \(2\)-length and \(2\)-period of a finite solvable group”, Algebra Logic, 18:1 (1979), 5-20 · Zbl 0457.20026 · doi:10.1007/BF01669309
[7] E. G. Bryukhanova, “The relation between \(2\)-length and derived length of a Sylow \(2\)-subgroup of a finite soluble group”, Math. Notes, 29:1-2 (1981), 85-90 · Zbl 0528.20010 · doi:10.1007/BF01140917
[8] A. H. Clifford, “Representations induced in an invariant subgroup”, Ann. Math. (2), 38 (1937), 533-550 · Zbl 0017.29705 · doi:10.2307/1968599
[9] G. Ercan, “On a Fitting length conjecture without the coprimeness condition”, Monatsh. Math., 167:2 (2012), 175-187 · Zbl 1263.20023 · doi:10.1007/s00605-011-0287-3
[10] G. Ercan, İ. Ş. Güloğlu, “Fixed point free action on groups of odd order”, J. Algebra, 320 (2008), 426-436 · Zbl 1155.20021 · doi:10.1016/j.jalgebra.2008.01.033
[11] E. C. Dade, “Carter subgroups and Fitting heights of finite solvable groups”, Illinois J. Math., 13 (1969), 449-514 · Zbl 0195.04003
[12] P. Flavell, S. Guest, R. Guralnick, “Characterizations of the solvable radical”, Proc. Amer. Math. Soc., 138 (2010), 1161-1170 · Zbl 1202.20026 · doi:10.1090/S0002-9939-09-10066-7
[13] P. Fong, “On orders of finite groups and centralizers of \(p\)-elements”, Osaka J. Math., 13 (1976), 483-489 · Zbl 0372.20010
[14] G. Glauberman, “On loops of odd order. II”, J. Algebra, 8 (1968), 393-414 · Zbl 0155.03901 · doi:10.1016/0021-8693(68)90050-1
[15] G. Glauberman, C. R. B. Wright, “Nilpotence of finite Moufang \(2\)-loops”, J. Algebra, 8 (1968), 415-417 · Zbl 0155.03902 · doi:10.1016/0021-8693(68)90051-3
[16] A. N. Grishkov, “The weakened Burnside problem for Moufang loops of prime period”, Siberian Math. J., 28 (1987), 401-405 · Zbl 0633.20050 · doi:10.1007/BF00969569
[17] F. Gross, “The \(2\)-length of a finite solvable group”, Pacific J. Math., 15 (1965), 1221-1237 · Zbl 0136.01501 · doi:10.2140/pjm.1965.15.1221
[18] F. Gross, “Solvable groups admitting a fixed-point-free automorphism of prime power order”, Proc. Amer. Math. Soc., 17 (1966), 1440-1446 · Zbl 0147.27201 · doi:10.1090/S0002-9939-1966-0207836-0
[19] P. Hall, G. Higman, “The \(p\)-length of a \(p\)-soluble group and reduction theorems for Burnside”s problem”, Proc. London Math. Soc. (3), 6 (1956), 1-42 · Zbl 0073.25503 · doi:10.1112/plms/s3-6.1.1
[20] B. Hartley, “A general Brauer-Fowler theorem and centralizers in locally finite groups”, Pacific J. Math., 152 (1992), 101-117 · Zbl 0713.20023 · doi:10.2140/pjm.1992.152.101
[21] B. Hartley, I. M. Isaacs, “On characters and fixed points of coprime operator groups”, J. Algebra, 131 (1990), 342-358 · Zbl 0703.20023 · doi:10.1016/0021-8693(90)90179-R
[22] B. Hartley, T. Meixner, “Finite soluble groups containing an element of prime order whose centralizer is small”, Arch. Math. (Basel), 36 (1981), 211-213 · Zbl 0447.20014 · doi:10.1007/BF01223692
[23] B. Hartley, V. Turau, “Finite soluble groups admitting an automorphism of prime power order with few fixed points”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 431-441 · Zbl 0629.20007 · doi:10.1017/S0305004100067487
[24] G. Higman, “Groups and rings which have automorphisms without non-trivial fixed elements”, J. London Math. Soc. (2), 32 (1957), 321-334 · Zbl 0079.03203 · doi:10.1112/jlms/s1-32.3.321
[25] A. H. M. Hoare, “A note on \(2\)-soluble groups”, J. London Math. Soc., 35 (1960), 193-199 · Zbl 0166.28502 · doi:10.1112/jlms/s1-35.2.193
[26] F. Hoffman, “Nilpotent height of finite groups admitting fixed-point-free automorphisms”, Math. Z., 85 (1964), 260-267 · Zbl 0126.27001 · doi:10.1007/BF01112147
[27] E. I. Khukhro, “Finite \(p\)-groups admitting an automorphism of order \(p\) with a small number of fixed points”, Math. Notes, 38:5 (1986), 867-870 · Zbl 0598.20024 · doi:10.1007/BF01157528
[28] E. I. Khukhro, “Groups and Lie rings admitting an almost regular automorphism of prime order”, Math. USSR Sbornik, 71:9 (1992), 51-63 · Zbl 0745.17008 · doi:10.1070/SM1992v071n01ABEH001390
[29] E. I. Khukhro, “Groups with an automorphism of prime order that is almost regular in the sense of rank”, J. London Math. Soc., 77 (2008), 130-148 · Zbl 1140.20022 · doi:10.1112/jlms/jdm097
[30] E. I. Khukhro, Ant. A. Klyachko, N. Yu. Makarenko, Yu. B. Melnikova, “Automorphism invariance and identities”, Bull. London Math. Soc., 41 (2009), 804-816 · Zbl 1250.20023 · doi:10.1112/blms/bdp056
[31] E. I. Khukhro, N. Yu. Makarenko, “Large characteristic subgroups satisfying multilinear commutator identities”, J. London Math. Soc., 75:3 (2007), 635-646 · Zbl 1132.20013 · doi:10.1112/jlms/jdm047
[32] E. I. Khukhro, N. Yu. Makarenko, “Characteristic nilpotent subgroups of bounded co-rank and automorphically invariant nilpotent ideals of bounded codimension in Lie algebras”, Quart. J. Math., 58 (2007), 229-247 · Zbl 1147.17007 · doi:10.1093/qmath/ham012
[33] E. I. Khukhro, V. D. Mazurov, “Finite groups with an automorphism of prime order whose centralizer has small rank”, J. Algebra, 301 (2006), 474-492 · Zbl 1108.20019 · doi:10.1016/j.jalgebra.2006.02.039
[34] E. I. Khukhro, V. D. Mazurov, “Automorphisms with centralizers of small rank”, Groups St. Andrews 2005, v. 2, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007, 564-585 · Zbl 1130.20021
[35] E. I. Khukhro, P. Shumyatsky, Word-values and pronilpotent subgroups in profinite groups, in preparation, 2013 · Zbl 1310.20030
[36] A. A. Klyachko, Yu. B. Mel’nikova, “A short proof of the Makarenko-Khukhro theorem on large characteristic subgroups with identity”, Sb. Math., 200:5 (2009), 661-664 · Zbl 1191.20030 · doi:10.1070/SM2009v200n05ABEH004013
[37] A. A. Klyachko, M. V. Milentyeva, Large and symmetric: the Khukhro-Makarenko theorem on laws – without laws, Preprint, 2013, arXiv: · Zbl 1337.20028
[38] Transl. II Ser. Amer. Math. Soc., 36 (1964), 63-99 · Zbl 0132.01702
[39] Unsolved Problems in Group Theory, The Kourovka Notebook no. 17, Institute of Mathematics, Novosibirsk, 2010
[40] L. G. Kovács, “Groups with regular automorphisms of order four”, Math. Z., 75 (1960/61), 277-294 · Zbl 0097.01202 · doi:10.1007/BF01211026
[41] V. A. Kreknin, “The solubility of Lie algebras with regular automorphisms of finite period”, Sov. Math. Dokl., 4 (1963), 683-685 · Zbl 0134.03604
[42] V. A. Kreknin, A. I. Kostrikin, “Lie algebras with regular automorphisms”, Sov. Math. Dokl., 4 (1963), 355-358 · Zbl 0125.28902
[43] M. Liebeck, “The classification of finite simple Moufang loops”, Math. Proc. Cambridge Philos. Soc., 102:1 (1987), 33-47 · Zbl 0622.20061 · doi:10.1017/S0305004100067025
[44] W. Magnus, “A connection between the Baker-Hausdorff formula and a problem of Burnside”, Ann. of Math. (2), 52 (1950), 111-126 · Zbl 0051.25502 · doi:10.2307/1969742
[45] N. Yu. Makarenko, “Finite \(2\)-groups admitting an automorphism of order 4 with few fixed points”, Algebra and Logic, 32:4 (1993), 215-230 · Zbl 0832.20035 · doi:10.1007/BF02261746
[46] N. Yu. Makarenko, “Finite 2-groups with automorphisms of order 4”, Algebra Logic, 40:1 (2001), 47-54 · Zbl 0979.20023 · doi:10.1023/A:1002854206160
[47] N. Yu. Makarenko, “A nilpotent ideal in the Lie rings with an automorphism of prime order”, Siberian Math. J., 46:6 (2005), 1097-1107 · Zbl 1118.17003 · doi:10.1007/s11202-005-0104-0
[48] N. Yu. Makarenko, E. I. Khukhro, “Almost solubility of Lie algebras with almost regular automorphisms”, J. Algebra, 277 (2004), 370-407 · Zbl 1060.17004 · doi:10.1016/j.jalgebra.2003.09.019
[49] N. Yu. Makarenko, E. I. Khukhro, “Finite groups with an almost regular automorphism of order four”, Algebra Logic, 45:5 (2006), 326-343 · Zbl 1156.20022 · doi:10.1007/s10469-006-0030-7
[50] N. Yu. Makarenko, P. Shumyatsky, “Characteristic subgroups in locally finite groups”, J. Algebra, 352 (2012), 354-360 · Zbl 1255.20038 · doi:10.1016/j.jalgebra.2011.11.014
[51] V. D. Mazurov, “Finite groups with solvable subgroups of \(2\)-length one”, Algebra Logic, 11 (1972), 243-259 · Zbl 0279.20018 · doi:10.1007/BF02219097
[52] G. P. Nagy, “Burnside problems for Moufang and Bol loops of small exponent”, Acta Sci. Math. (Szeged), 67 (2001), 687-696 · Zbl 0995.20049
[53] N. Nikolov, D. Segal, “On finitely generated profinite groups. I. Strong completeness and uniform bounds”, Ann. of Math. (2), 165 (2007), 171-238 · Zbl 1126.20018 · doi:10.4007/annals.2007.165.171
[54] M. R. Pettet, “Automorphisms and Fitting factors of finite groups”, J. Algebra, 72 (1981), 404-412 · Zbl 0473.20018 · doi:10.1016/0021-8693(81)90301-X
[55] P. Rowley, “Finite groups admitting a fixed-point-free automorphism group”, J. Algebra, 174 (1995), 724-727 · Zbl 0835.20036 · doi:10.1006/jabr.1995.1148
[56] I. N. Sanov, “On a certain system of relations in periodic groups with exponent a power of a prime number”, Izv. Akad. Nauk SSSR Ser. Mat., 15:6 (1951), 477-502 (in Russian) · Zbl 0045.30203
[57] D. Segal, “Closed subgroups of profinite groups”, Proc. London Math. Soc. (3), 81 (2000), 29-54 · Zbl 1030.20017 · doi:10.1112/S002461150001234X
[58] E. Shult, “On groups admitting fixed point free Abelian operator groups”, Illinois J. Math., 9 (1965), 701-720 · Zbl 0136.28504
[59] P. Shumyatsky, “On groups with commutators of bounded order”, Proc. Amer. Math. Soc., 127 (1999), 2583-2586 · Zbl 0956.20017 · doi:10.1090/S0002-9939-99-04982-5
[60] P. Shumyatsky, “Multilinear commutators in residually finite groups”, Israel J. Math., 189 (2012), 207-224 · Zbl 1283.20021 · doi:10.1007/s11856-011-0157-7
[61] V. P. Shunkov, “On periodic groups with an almost regular involution”, Algebra Logic, 11:4 (1972), 260-272 · Zbl 0275.20074 · doi:10.1007/BF02219098
[62] J. Thompson, “Finite groups with fixed-point-free automorphosms of prime order”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 578-581 · Zbl 0086.25101 · doi:10.1073/pnas.45.4.578
[63] J. Thompson, “Normal \(p\)-complements for finite groups”, Math. Z., 72 (1960), 332-354 · Zbl 0098.02003 · doi:10.1007/BF01162958
[64] J. Thompson, “Automorphisms of solvable groups”, J. Algebra, 1 (1964), 259-267 · Zbl 0123.02602 · doi:10.1016/0021-8693(64)90022-5
[65] A. Turull, “Fitting height of groups and of fixed points”, J. Algebra, 86 (1984), 555-566 · Zbl 0526.20017 · doi:10.1016/0021-8693(84)90048-6
[66] A. Turull, “Character theory and length problems”, Finite and locally finite groups (Istanbul, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995, 377-400 · Zbl 0847.20002
[67] Y. M. Wang, Z. M. Chen, “Solubility of finite groups admitting a coprime order operator group”, Boll. Un. Mat. Ital. A (7), 7:3 (1993), 325-331 · Zbl 0804.20017
[68] J. Wilson, “On the structure of compact torsion groups”, Monatsh. Math., 96 (1983), 57-66 · Zbl 0511.20020 · doi:10.1007/BF01298934
[69] E. I. Zelmanov, “On some problems of the theory of groups and Lie algebras”, Math. USSR Sbornik, 66:1 (1990), 159-168 · Zbl 0693.17006 · doi:10.1070/SM1990v066n01ABEH001168
[70] E. I. Zelmanov, “A solution of the Restricted Burnside Problem for groups of odd exponent”, Math. USSR Izvestiya, 36:1 (1991), 41-60 · Zbl 0709.20020 · doi:10.1070/IM1991v036n01ABEH001946
[71] E. I. Zelmanov, “A solution of the Restricted Burnside Problem for 2-groups”, Math. USSR Sbornik, 72:2 (1992), 543-565 · Zbl 0782.20038 · doi:10.1070/SM1992v072n02ABEH001272
[72] E. I. Zelmanov, “On periodic compact groups”, Israel J. Math., 77:1-2 (1992), 83-95 · Zbl 0786.22008 · doi:10.1007/BF02808012
[73] E. I. Zelmanov, “Lie ring methods in the theory of nilpotent groups”, Proc. Groups’ 93/St. Andrews, v. 2, London Math. Soc. Lecture Note Ser., 212, Cambridge Univ. Press, 1995, 567-585 · Zbl 0860.20031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.