×

A note on Itô’s theorem of \(p\)-nilpotence. (English) Zbl 1490.20016

A finite group \(G\) is \(p\)-nilpotent if there exists a normal subgroup \(H\) of order coprime to \(p\) such that \([G:H]\) is a \(p\)-power. If \(P\) is a \(p\)-group, then define \begin{align*} \Omega(P) &= \begin{cases} \langle x\in G ~|~ x^p=1\rangle &\text{if \(p>2\) or \(P\) abelian}, \\ \langle x\in G ~|~ x^4=1\rangle &\text{otherwise}. \end{cases} \end{align*} A result of N. Ito [Kōdai Math. Semin. Rep. 1951, 1–6 (1951; Zbl 0044.01303)] states that a group \(G\) is \(p\)-nilpotent if \(\Omega(P)\) is central in \(G\), where \(P\) is a Sylow \(p\)-group of \(G\). T. J. Laffey showed in [Proc. Camb. Philos. Soc. 75, 133–137 (1974; Zbl 0277.20022)] that \(G\) is \(p\)-nilpotent if and only if \(N_G(P)\) is \(p\)-nilpotent, assuming that \(\Omega(P)\) is central in \(P\).
The authors generalize the setting and ask about the \(p\)-nilpotency of \(G\) provided \(\Omega(P)\) is contained in the norm of \(P\). The norm of a group \(G\), denoted by \(N(G)\), is the intersection of all \(N_G(H)\) for every \(H\leqslant G\). They show that if \(p\) is an odd prime, \(P\) a Sylow \(p\)-subgroup of \(G\), and \(\Omega(P)\leqslant N(P)\), then \(G\) is \(p\)-nilpotent if and only if \(N_G(P)\) is \(p\)-nilpotent. The authors prove additional results in this direction under various generalizations.

MSC:

20D15 Finite nilpotent groups, \(p\)-groups
Full Text: DOI

References:

[1] [1] Assad, M., On p-nilpotence of finite groups, J. Algebra, 277, 157-164 (2004) · Zbl 1061.20015
[2] [2] Baer, R., Der Kern eine charakteristische Untergruppe, Compos. Math, 1, 254-283 (1934) · Zbl 0009.15504
[3] [3] Doerk, K.; Hawkes, T., Finite Soluble Groups (1992), Berlin: Walter de Gruyter, Berlin · Zbl 0753.20001
[4] [4] Gong, L.; Guo, X., On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group, Algebra Colloq, 20, 2, 349-360 (2013) · Zbl 1281.20020 · doi:10.1142/S1005386713000321
[5] [5] Guo, W., The Theory of Classes of Groups (2000), Dordrecht: Kluwer Academic Publishers · Zbl 1005.20016
[6] [6] Huppert, B., Endliche Gruppen, I (1967), Berlin: Berlin, Springer · Zbl 0217.07201
[7] [7] Laffey, T. J., A lemma on finite p-groups and some consequences, Math. Proc. Cambridge Philos. Soc, 75, 2, 133-137 (1974) · Zbl 0277.20022 · doi:10.1017/S0305004100048350
[8] [8] Schenkman, E., On the norm of a group, Illionis J. Math, 4, 150-152 (1960) · Zbl 0099.25104
[9] [9] Thompson, J. G., Normal p-complement for finite groups, J. Algebra, 1, 1, 43-46 (1964) · Zbl 0119.26802 · doi:10.1016/0021-8693(64)90006-7
[10] [10] Wang, J.; Guo, X., On generalized Dedekind groups, Acta Math. Hungar., 122, 1-2, 37-44 (2009) · Zbl 1188.20016 · doi:10.1007/s10474-009-7178-2
[11] [11] Wei, H.; Wang, Y.; Liu, X., Some necessary and sufficient conditions for p-nilpotence of finite gorups, Bull. Austral. Math. Soc, 68, 3, 371-378 (2003) · Zbl 1060.20016 · doi:10.1017/S0004972700037783
[12] [12] Zhang, X.; Xu, Y., A criterion of p-nilpotency of finite groups with some weakly s-semipermutable subgroups, Ital. J. Pure Appl. Math, 42, 223-229 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.