×

The Dineen problem for homogeneous orthogonally-additive polynomials. (English) Zbl 1310.06014

Let \(A,B\) be archimedean vector lattices. A subset \(D\) of \(A\times A\times\cdots\times A\) is called order bounded if there exist \((a_1,a_2,\ldots,a_n)\) and \((b_1,b_2,\ldots,b_n)\) in \(A\times A\times\cdots\times A\) with \((a_1,a_2,\ldots,a_n)\leq (x_1,x_2,\ldots,x_n)\leq (b_1,b_2,\ldots,b_n)\) for all \((x_1,x_2,\ldots,x_n)\in A\times A\times\cdots\times A\). An order bounded map \(P\colon A\to B\) is called a homogeneous polynomial of degree \(n\) if \(P(x)=\Psi(x_1,x_2,\ldots,x_n)\) where \(\Psi\) is an order bounded \(n\)-inear map from \(A\times A\times\cdots\times A\) into \(B\). A homogeneous polynomial of degree \(n\), \(P\colon A\to B\) is said to be orthogonally additive if \(P(x+y)=P(x)+P(y)\) for all \(x,y\in A\) with \(|x|\wedge |y|=0\).
Let \(B,C\) be vector spaces and \(A\) be a subspace of \(C\). The author studies whether a homogeneous polynomial \(P\colon A\to B\) can be extended to \(\overline P\colon C\to B\). He shows that the answer is affirmative if \(A,B\) are archimedean vector lattices, \(A^\delta\) is Dedekind completion of \(A\) and \((A')'_n\) is the order bidual of \(A\).

MSC:

06F25 Ordered rings, algebras, modules
46G25 (Spaces of) multilinear mappings, polynomials
47B65 Positive linear operators and order-bounded operators
Full Text: DOI

References:

[1] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Academic Press, Orlando (1985)
[2] Aron, R., Berner, P.: A Hahn–Banach extension theorem for analytic mappings. Bull. Soc. Math. France 106(1), 3–24 (1978) · Zbl 0378.46043
[3] Benyamini, Y., Lassalle, S., Llavona, J.L.G.: Homogeneous orthogonally-additive polynomials on Banach lattices. Bull. London Math. Soc. 38(3), 459–469 (2006) · Zbl 1110.46033 · doi:10.1112/S0024609306018364
[4] Bernau, S.J., Huijsmans, C.B.: The order bidual of almost f-algebras and d-algebras. Trans. Am. Math. Soc. 347, 4259–4275 (1995) · Zbl 0851.46003
[5] Buskes, G., van Rooij, A.: Almost f-algebras: commutativity and the Cauchy-Schwarz inequality. Positivity 4, 227–331 (2000) · Zbl 0987.46002 · doi:10.1023/A:1009826510957
[6] Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive polynomials over C(K) are measures–a short proof. Int. Equ. Oper. Theory 56(4), 597–602 (2006) · Zbl 1122.46025 · doi:10.1007/s00020-006-1439-z
[7] De Pagter, B.: f-Algebras and Orthomorphisms. Thesis, Leiden (1981)
[8] Dineen, S.: Holomorphically complete locally convex topological vector spaces. LNM 332, 77–111 (1973) · Zbl 0278.46005
[9] Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963) · Zbl 0137.02001
[10] Grobler, J.J., Labuschagne, C.C.A.: The tensor product of Archimedean ordered vector spaces. Math. Proc. Camb. Phil. Soc. 104, 331–345 (1988) · Zbl 0663.46006 · doi:10.1017/S0305004100065506
[11] Huijsmans, C.B., De Pagter, B.: The order bidual of lattice ordered algebras. J. Funct. Anal. 59, 61–74 (1984) · Zbl 0549.46006 · doi:10.1016/0022-1236(84)90052-1
[12] Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971) · Zbl 0231.46014
[13] Meyer-Neiberg, P.: Banach Lattices. Springer, Berlin (1974)
[14] Pérez-Garcıa, D., Villanueva, I.: Orthogonally additive polynomials on spaces of continuous functions. J. Math. Anal. Appl. 306(1), 97–105 (2005) · Zbl 1076.46035 · doi:10.1016/j.jmaa.2004.12.036
[15] Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, New York (1974) · Zbl 0296.47023
[16] Sundaresan, K.: Geometry of Spaces of Homogeneous Polynomials on Banach Lattices. Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,vol. 4, pp. 571–586. American Mathematical Society, Providence (1991) · Zbl 0745.46028
[17] Toumi, M.A.: Extensions of orthosymmetric lattice bimorphisms. Proc. Am. Math. Soc. 134, 1615–1621 (2006) · Zbl 1100.06013 · doi:10.1090/S0002-9939-05-08142-6
[18] Toumi, M.A.: Commutativity of almost f-algebras. Positivity 11(2), 357–368 (2007) · Zbl 1119.06013 · doi:10.1007/s11117-005-0038-6
[19] Toumi, M.A.: A decomposition theorem for orthogonally additive polynomials on archimedean vector lattices. Bull. Belgian Math. Soc. (2013, to appear) · Zbl 1280.06014
[20] Zaanen, A.C.: Riesz Spaces II. North-Holland, Amsterdam (1983) · Zbl 0519.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.