×

Modeling stock market dynamics with stochastic differential equation driven by fractional Brownian motion: a Bayesian method. (English) Zbl 1463.62351

Summary: A Bayesian method is proposed for the parameter identification of a stock market dynamics which is modeled by a Stochastic Differential Equation (SDE) driven by fractional Brownian motion (fBm). The formulation for the identification is based on the Wick-product solution of the SDE driven by an fBm. The determination of the solution is carried out using an independence Metropolis Hastings algorithm. The historical record of SET index is employed for the purpose of method demonstration. For the SET index example, the estimate of the Hurst exponent is approximately 0.5. Consequently, the market is considered efficient.

MSC:

62P20 Applications of statistics to economics
91B84 Economic time series analysis
62G30 Order statistics; empirical distribution functions
60G22 Fractional processes, including fractional Brownian motion
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] P. Alcs, I.M. Jnosi, Modeling the BUX index by a novel stochastic differential equation, Physica A 299 (2001) 273-278. · Zbl 0974.91508
[2] D.O. Cajueiro, B.M. Tabak, The long-range dependence phenomena in asset returns: the Chinese case, Appl. Econ. Lett. 13 (2) (2006) 131-133.
[3] E. Panas, Estimating fractal dimension using stable distributions and exploring longmemory through ARFIMA models in Athens Stock Exchange, Appl.Financ. Econ. 11 (4) (2001) 395-402.
[4] B. Podobnik, D. Fu, T. Jagric, I. Grosse, H.E. Stanley, Fractionally integrated processfor transition economics, Physica A 362 (2) (2006) 465-470.
[5] B.B. Mandelbrot, J.R. Wallis, Robutstness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Res. 5 (1969) 967-987.
[6] M.S. Taqqu, V. Teverovsky, W. Willinger, Estimators for long-range dependence: an empirical study, Fractals 3 (1995) 785-798. · Zbl 0864.62061
[7] J.F. Coeurjolly, Infrence Statistique Pour Les Mouvements Browniens Fractionnaires Et Multifractionnaires, PhD thesis, Universit Joseph Fourier, Dec. 2000.
[8] T. Higuchi, Approach to an irregular time series on the basis of the fractal theory, Physica D 31 (1988) 277-283. · Zbl 0649.58046
[9] J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models. Journal of Time Series Analysis 4 (1983) 221-238. · Zbl 0534.62062
[10] C.K. Peng, S.V. Buldyrev, M. Simons, H.E. Stanley, A.L. Goldberger, Mosaic organization of DNA nucleatides, Physical Review E 49 (1994) 1685-1689.
[11] B.B. Mandelbrot, J.R. Wallis, Computer experiments with fractional Gaussian noises. Water Resour, Res 5 (1969).
[12] A.W. Lo, Long-term memory in stock market prices. Econometrica 59 (5) (1991) 1279-1313. · Zbl 0781.90023
[13] C.K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5 (1995) 82-87.
[14] J.M. Bardet, I. Kammoun, Asymptotic properties of the detrended fluctuation analysis of long range dependent process. IEEE Transactions on information theory 54 (5) (2007) 2041-2052. · Zbl 1328.60098
[15] S. Arianos, A. Carbone, Detrending moving average algorithm: A closed-form approximation of the scaling law, Physica A 382 (2007) 9-15.
[16] P. Whittle, The analysis of multiple stationary time series. Journal of the Royal Statistical Society, Series B (Methodological) 15 (1) (1953) 125-139. · Zbl 0053.41002
[17] J.M. Bardet, P. Bertrand, Definition, properties and wavelet analysis of fractional Brownian motion. Fractals 15 (2007) 73-87. · Zbl 1142.60329
[18] P. Abry, D. Veitch, Wavelet analysis of long-range-dependent traffic. IEEE Transactions on Information Theory 44 (1) (1998) 2-15. · Zbl 0905.94006
[19] E.J. McCoy, A.T. Walden, Wavelet analysis and synthesis of stationary long-memory processes, Journal of Computational and Graphical Statistics 5 (1996) 26-56.
[20] N. Makarava, S. Benmehdi, M. Holschneider, Bayesian estimation of selfsimilarity exponent, Phys. Rev. E 84 (2) (2011).
[21] A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, Doklady Akad, Nauk SSSR 26 (1940) 115-118. · JFM 66.0552.03
[22] B.B. Mandelbrot, J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968) 422-437. · Zbl 0179.47801
[23] F. Biagini, Y. Hu, B. Ksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag London Limited, London, (2008). · Zbl 1157.60002
[24] H.E. Hurst, Long-term storage capacity reservoirs, Trans. Amer. Soc. Civil Eng. 116 (1951) 400-410.
[25] Y. Hu, B. Ksendal, Fractional White Noise Calculus and Applications to Finance, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003) 1-32. · Zbl 1045.60072
[26] B.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.