×

Whole cell tracking through the optimal control of geometric evolution laws. (English) Zbl 1349.92006

Summary: Cell tracking algorithms which automate and systematise the analysis of time lapse image data sets of cells are an indispensable tool in the modelling and understanding of cellular phenomena. In this study we present a theoretical framework and an algorithm for whole cell tracking. Within this work we consider that “tracking” is equivalent to a dynamic reconstruction of the whole cell data (morphologies) from static image data sets. The novelty of our work is that the tracking algorithm is driven by a model for the motion of the cell. This model may be regarded as a simplification of a recently developed physically meaningful model for cell motility. The resulting problem is the optimal control of a geometric evolution law and we discuss the formulation and numerical approximation of the optimal control problem. The overall goal of this work is to design a framework for cell tracking within which the recovered data reflects the physics of the forward model. A number of numerical simulations are presented that illustrate the applicability of our approach.

MSC:

92-08 Computational methods for problems pertaining to biology
92C17 Cell movement (chemotaxis, etc.)
49M25 Discrete approximations in optimal control
49N90 Applications of optimal control and differential games

References:

[1] Bray, D., Cell Movements: From Molecules to Motility (2001), Routledge
[2] Xiong, Y.; Iglesias, P. A., Tools for analyzing cell shape changes during chemotaxis, Integ. Biol., 2, 11-12, 561-567 (2010)
[3] Meijering, E.; Dzyubachyk, O.; Smal, I., Methods for cell and particle tracking, Methods Enzymol., 504, 183 (2012)
[4] Elliott, C. M.; Stinner, B.; Venkataraman, C., Modelling cell motility and chemotaxis with evolving surface finite elements, J. R. Soc. Interface, 9, 76, 3027-3044 (2012)
[5] Croft, W.; Elliott, C. M.; Ladds, G.; Stinner, B.; Venkataraman, C.; Weston, C., Parameter identification problems in the modelling of cell motility, J. Math. Biol., 1-38 (2014)
[6] Haußer, F.; Rasche, S.; Voigt, A., The influence of electric fields on nanostructures—simulation and control, Math. Comput. Simul., 80, 7, 1449-1457 (2010) · Zbl 1192.78028
[7] Haußer, F.; Janssen, S.; Voigt, A., Control of nanostructures through electric fields and related free boundary problems, (Constrained Optimization and Optimal Control for Partial Differential Equations (2012), Springer), 561-572 · Zbl 1356.49070
[8] Shao, D.; Rappel, W.; Levine, H., Computational model for cell morphodynamics, Phys. Rev. Lett., 105, 10, 108104 (2010)
[9] Marth, W.; Voigt, A., Signaling networks and cell motility: a computational approach using a phase field description, J. Math. Biol., 1-22 (2013)
[10] Ziebert, F.; Swaminathan, S.; Aranson, I., Model for self-polarization and motility of keratocyte fragments, J. R. Soc. Interface, 9, 70, 1084-1092 (2012)
[11] Neilson, M.; Mackenzie, J.; Webb, S.; Insall, R., Modelling cell movement and chemotaxis pseudopod based feedback, SIAM J. Sci. Comput., 33, 3, 1035-1057 (2011) · Zbl 1229.92014
[12] Neilson, M.; Veltman, D.; van Haastert, P.; Webb, S.; Mackenzie, J.; Insall, R., Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour, PLoS Biol., 9, 5, e1000618 (2011)
[13] Shao, D.; Levine, H.; Rappel, W.-J., Coupling actin flow, adhesion, and morphology in a computational cell motility model, Proc. Nat. Acad. Sci., 109, 18, 6851-6856 (2012)
[14] Henry, K. M.; Pase, L.; Ramos-Lopez, C. F.; Lieschke, G. J.; Renshaw, S. A.; Reyes-Aldasoro, C. C., Phagosight: an open-source MATLAB® package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model, PLoS ONE, 8, 8, e72636 (2013)
[15] Bosgraaf, L.; van Haastert, P.; Bretschneider, T., Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using quimp2, Cell Motil. Cytoskelet., 66, 3, 156-165 (2009)
[16] Tyson, R. A.; Epstein, D.; Anderson, K.; Bretschneider, T., High resolution tracking of cell membrane dynamics in moving cells: an electrifying approach, Math. Model. Nat. Phenom., 5, 01, 34-55 (2010) · Zbl 1183.92030
[17] Neilson, M. P.; Mackenzie, J. A.; Webb, S. D.; Insall, R. H., Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell, Integ. Biol., 2, 11-12, 687-695 (2010)
[18] Vierling, M., Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control - theory and numerical realization, Interfaces Free Bound., 16, 2, 137-173 (2014) · Zbl 1295.49004
[19] Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, vol. 112 (2010), AMS Bookstore · Zbl 1195.49001
[20] Chen, X., Generation and propagation of interfaces in reaction-diffusion systems, Trans. Am. Math. Soc., 334, 2, 877-913 (1992) · Zbl 0785.35006
[21] Blowey, J.; Elliott, C., Curvature dependent phase boundary motion and parabolic double obstacle problems, (Degenerate Diffusions (1993), Springer), 19-60 · Zbl 0794.35092
[22] Bellettini, G.; Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., 25, 3, 537-566 (1996) · Zbl 0873.53011
[23] Brassel, M.; Bretin, E., A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Methods Appl. Sci., 34, 10, 1157-1180 (2011) · Zbl 1235.49082
[24] Du, Q.; Liu, C.; Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212, 2, 757-777 (2006) · Zbl 1086.74024
[25] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23 (2009) · Zbl 1167.49001
[26] Snyman, J., Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms, Applied Optimization, vol. 97 (2005), Springer · Zbl 1104.90003
[27] Chan, T. F.; Vese, L. A., Active contours without edges, IEEE Trans. Image Process., 10, 2, 266-277 (2001) · Zbl 1039.68779
[28] Dormann, D.; Libotte, T.; Weijer, C. J.; Bretschneider, T., Simultaneous quantification of cell motility and protein-membrane-association using active contours, Cell Motil. Cytoskelet., 52, 4, 221-230 (2002)
[29] Kadirkamanathan, V.; Anderson, S. R.; Billings, S. A.; Zhang, X.; Holmes, G. R.; Reyes-Aldasoro, C. C.; Elks, P. M.; Renshaw, S. A., The neutrophil’s eye-view: inference and visualisation of the chemoattractant field driving cell chemotaxis in vivo, PLoS ONE, 7, 4, e35182 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.