×

On one-dimensional self-similar tilings and \(pq\)-tiles. (English) Zbl 1019.52012

Summary: Let \(b \geq 2\) be an integer base, \(\mathcal{D} = \{ 0, d_1, \dots , d_{b-1}\} \subset \mathbb{Z}\) a digit set and \(T = T(b, \mathcal{D})\) the set of radix expansions. It is well known that if \(T\) has nonvoid interior, then \(T\) can tile \(\mathbb{R}\) with some translation set \(\mathcal{J}\) (\(T\) is called a tile and \(\mathcal{D}\) a tile digit set). There are two fundamental questions studied in the literature: (i) describe the structure of \(\mathcal{J}\); (ii) for a given \(b\), characterize \(\mathcal{D}\) so that \(T\) is a tile.
We show that for a given pair \((b,\mathcal{D})\), there is a unique self-replicating translation set \(\mathcal{J} \subset \mathbb{Z}\), and it has period \(b^m\) for some \(m \in \mathbb{N}\). This completes some earlier work of Kenyon. Our main result for (ii) is to characterize the tile digit sets for \(b = pq\) when \(p,q\) are distinct primes. The only other known characterization is for \(b = p^l\), due to Lagarias and Wang. The proof for the \(pq\) case depends on the techniques of Kenyon and De Bruijn on the cyclotomic polynomials, and also on an extension of the product-form digit set of Odlyzko.

MSC:

52C20 Tilings in \(2\) dimensions (aspects of discrete geometry)
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
42B99 Harmonic analysis in several variables
Full Text: DOI

References:

[1] Christoph Bandt, Self-similar sets. III. Constructions with sofic systems, Monatsh. Math. 108 (1989), no. 2-3, 89 – 102. · Zbl 0712.58039 · doi:10.1007/BF01308664
[2] C. Bandt and Y. Wang, Disk-like self-affine tiles in \Bbb R², Discrete Comput. Geom. 26 (2001), no. 4, 591 – 601. · Zbl 1020.52018 · doi:10.1007/s00454-001-0034-y
[3] N. G. De Bruijn, On the factorization of cyclic groups, Indag. Math. Kon. Akad. Wet., 15 (1953), 370-377. · Zbl 0051.25803
[4] Karlheinz Gröchenig and Andrew Haas, Self-similar lattice tilings, J. Fourier Anal. Appl. 1 (1994), no. 2, 131 – 170. · Zbl 0978.28500 · doi:10.1007/s00041-001-4007-6
[5] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713 – 747. · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[6] X. G. He, K. S. Lau and H. Rao, Self-affine sets and graph-directed systems, Constr. Approx. (to appear). · Zbl 1027.37012
[7] Ibrahim Kirat and Ka-Sing Lau, On the connectedness of self-affine tiles, J. London Math. Soc. (2) 62 (2000), no. 1, 291 – 304. · Zbl 0986.37016 · doi:10.1112/S002461070000106X
[8] I. Kirat, K. S. Lau and H. Rao, On the expanding polynomials and connectedness of self-affine tiles, preprint. · Zbl 1054.52012
[9] Richard Kenyon, Self-replicating tilings, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 239 – 263. · Zbl 0770.52013 · doi:10.1090/conm/135/1185093
[10] Richard Kenyon, Projecting the one-dimensional Sierpinski gasket, Israel J. Math. 97 (1997), 221 – 238. · Zbl 0871.28006 · doi:10.1007/BF02774038
[11] Jeffrey C. Lagarias and Yang Wang, Self-affine tiles in \?\(^{n}\), Adv. Math. 121 (1996), no. 1, 21 – 49. · Zbl 0893.52013 · doi:10.1006/aima.1996.0045
[12] Jeffrey C. Lagarias and Yang Wang, Integral self-affine tiles in \?\(^{n}\). I. Standard and nonstandard digit sets, J. London Math. Soc. (2) 54 (1996), no. 1, 161 – 179. · Zbl 0893.52014 · doi:10.1112/jlms/54.1.161
[13] Jeffrey C. Lagarias and Yang Wang, Tiling the line with translates of one tile, Invent. Math. 124 (1996), no. 1-3, 341 – 365. · Zbl 0847.05037 · doi:10.1007/s002220050056
[14] Jeffrey C. Lagarias and Yang Wang, Integral self-affine tiles in \?\(^{n}\). II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), no. 1, 83 – 102. · Zbl 0893.52015 · doi:10.1007/s00041-001-4051-2
[15] A. M. Odlyzko, Nonnegative digit sets in positional number systems, Proc. London Math. Soc. (3) 37 (1978), no. 2, 213 – 229. · Zbl 0391.10012 · doi:10.1112/plms/s3-37.2.213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.