×

Necessary conditions for super-integrability of Hamiltonian systems. (English) Zbl 1223.37070

Summary: We formulate a general theorem which gives a necessary condition for the maximal super-integrability of a Hamiltonian system. This condition is expressed in terms of properties of the differential Galois group of the variational equations along a particular solution of the considered system. An application of this general theorem to natural Hamiltonian systems of \(n\) degrees of freedom with a homogeneous potential gives easily computable and effective necessary conditions for the super-integrability. To illustrate an application of the formulated theorems, we investigate: three known families of integrable potentials, and the three body problem on a line.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J30 Obstructions to integrability for finite-dimensional Hamiltonian and Lagrangian systems (nonintegrability criteria)
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
11E72 Galois cohomology of linear algebraic groups
34M35 Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms
34M50 Inverse problems (Riemann-Hilbert, inverse differential Galois, etc.) for ordinary differential equations in the complex domain
33C05 Classical hypergeometric functions, \({}_2F_1\)
Full Text: DOI

References:

[1] Arnold, V. I., Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0386.70001
[2] Fassò, F., Acta Appl. Math., 87, 1-3, 93 (2005) · Zbl 1073.37069
[3] (Tempesta, P.; Winternitz, P.; Harnad, J.; Miller, W.; Pogosyan, G.; Rodriguez, M., Superintegrability in classical and quantum systems. Superintegrability in classical and quantum systems, CRM Proceedings & Lecture Notes, vol. 37 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), Papers from the workshop held at the Université de Montréal, Montréal, QC, 16-21 September, 2002 · Zbl 1055.37004
[4] Kalnins, E. G.; Kress, J. M.; Pogosyan, G. S.; Miller, W., J. Phys. A, 34, 22, 4705 (2001) · Zbl 0993.70014
[5] Evans, N. W., Phys. Rev. A (3), 41, 10, 5666 (1990)
[6] Ziglin, S. L., Funct. Anal. Appl., 16, 181 (1982)
[7] Ziglin, S. L., Funct. Anal. Appl., 17, 6 (1983) · Zbl 0518.58016
[8] Baider, A.; Churchill, R. C.; Rod, D. L.; Singer, M. F., On the Infinitesimal Geometry of Integrable Systems, (Mechanics. Mechanics, Day, Waterloo, ON, 1992. Mechanics. Mechanics, Day, Waterloo, ON, 1992, Fields Inst. Commun., vol. 7 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 5-56 · Zbl 1005.37510
[9] Morales-Ruiz, J. J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, vol. 179 (1999), Birkhäuser: Birkhäuser Basel · Zbl 0934.12003
[10] Morales-Ruiz, J. J.; Ramis, J. P., Galoisian obstructions to integrability of Hamiltonian systems: Statements and examples, (Hamiltonian Systems with Three or More Degrees of Freedom. Hamiltonian Systems with Three or More Degrees of Freedom, S’Agaró, 1995. Hamiltonian Systems with Three or More Degrees of Freedom. Hamiltonian Systems with Three or More Degrees of Freedom, S’Agaró, 1995, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533 (1999), Kluwer Academic: Kluwer Academic Dordrecht), 509-513 · Zbl 0982.37061
[11] Morales-Ruiz, J. J.; Ramis, J. P., Methods Appl. Anal., 8, 1, 33 (2001) · Zbl 1140.37352
[12] Morales-Ruiz, J. J.; Ramis, J. P., Methods Appl. Anal., 8, 1, 113 (2001) · Zbl 1140.37353
[13] Maciejewski, A. J.; Przybylska, M., J. Math. Phys., 46, 6, 062901 (2005) · Zbl 1110.37042
[14] Kolchin, E. R., Am. J. Math., 90, 1151 (1968) · Zbl 0169.36701
[15] Ramani, A.; Dorizzi, B.; Grammaticos, B., Phys. Rev. Lett., 49, 21, 1539 (1982)
[16] Nakagawa, K.; Yoshida, H., J. Phys. A, 34, 41, 8611 (2001) · Zbl 1001.37048
[17] Bertrand, J., Théorème relatif au mouvement d’un point attiré vers un centre fixe, C.R., LXXVII, 849 (1873) · JFM 05.0470.01
[18] Yoshida, H., Physica D, 29, 1-2, 128 (1987) · Zbl 0659.70012
[19] Wojciechowski, S., Phys. Lett. A, 95, 6, 279 (1983)
[20] Yoshida, H., Celestial Mech., 32, 1, 73 (1984) · Zbl 0545.70031
[21] Kovacic, J. J., J. Symbolic Comput., 2, 1, 3 (1986)
[22] Singer, M. F.; Ulmer, F., J. Symbolic Comput., 16, 1, 9 (1993) · Zbl 0802.12004
[23] Kimura, T., Funkcial. Ekvac., 12, 269 (1969/1970)
[24] Iwasaki, K.; Kimura, H.; Shimomura, S.; Yoshida, M., From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects of Mathematics, vol. E16 (1991), Friedr. Vieweg & Sohn: Friedr. Vieweg & Sohn Braunschweig · Zbl 0743.34014
[25] Churchill, R. C., J. Symbolic Comput., 28, 4-5, 521 (1999) · Zbl 0958.34074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.