×

Construction of convex mappings of \(p\)-balls in \(\mathbb{C}^2\). (English) Zbl 1056.32017

The authors consider biholomorphic mappings \(F\) of the \(p\)-ball \(B_p=\{ (z,w)\in\mathbb{C}^2 : | z| ^p+| w| ^p < 1 \}\), where \(2\leq p < \infty\). In particular, they find conditions under which functions of the form \(F(z,w)=(z+aw^k,w)\), where \(a\in\mathbb{C}\) and \(k\in\mathbb{N}\), and \(F(z,w)=(f(z),g(w))\), where \(f\) and \(g\) are mappings of the unit disk, map \(B_p\) onto convex domains in \(\mathbb{C}^2\).

MSC:

32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI

References:

[1] R. Braun, W. Kaup and H. Upmeier, On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math. 25 (1978), 97–133. · Zbl 0398.32001 · doi:10.1007/BF01168604
[2] S. Gong, Convex and Starlike Mappings in Several Complex Variables, Kluwer, Academic Publishers, 1998. · Zbl 0926.32007
[3] I. Graham and G. Kohr, Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003. · Zbl 1042.30001
[4] I. Graham and G. Kohr, Univalent mappings associated with the Roper-Suffridge extension operator, J. d’Analyse Math. 81 (2000), 331–342. · Zbl 0981.32002 · doi:10.1007/BF02788995
[5] L. A. Harris, Schwarz’s lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1014–1017. · Zbl 0199.19401 · doi:10.1073/pnas.62.4.1014
[6] T. Liu and W. Zhang, Homogeneous expansions of normalized biholomorphic convex mappings over Bp, Sci. China Ser. A 40 (1997), 799–806. · Zbl 0890.32011 · doi:10.1007/BF02878918
[7] J. R. Muir, Jr. and T. J. Suffridge, Convex mappings of the ball in Cn that are half-plane mappings in one coordinate, submitted.
[8] J. R. Muir, Jr. and T. J. Suffridge, Unbounded convex mappings of the ball in \(\mathbb{C}\)n, Proc. Amer. Math. Soc. 129 2001) No.11, 3389–3393. · Zbl 0978.32016 · doi:10.1090/S0002-9939-01-05967-6
[9] J. A. Pfaltzgraff and T. J. Suffridge, Linear invariance, order, and convex mappings in \(\mathbb{C}\)n, Complex Variables Theory and Appl. 40 1999) No.1, 35–50. · Zbl 1025.32020 · doi:10.1080/17476939908815207
[10] J. A. Pfaltzgraff and T. J. Suffridge, Norm order and geometric properties of holomorphic mappings in \(\mathbb{C}\)n, J. Anal. Math. 82 (2000), 285–313. · Zbl 0978.32017 · doi:10.1007/BF02791231
[11] K. A. Roper and T. J. Suffridge, Convex mappings on the unit ball of \(\mathbb{C}\)n J. d’Analyse Math. 65 (1995), 333–347. · Zbl 0846.32006 · doi:10.1007/BF02788776
[12] K. A. Roper and T. J. Suffridge, Convexity properties of holomorphic mappings in \(\mathbb{C}\)n, Trans. Amer. Math. Soc. 351 (1999), 1803–1833. · Zbl 0926.32012 · doi:10.1090/S0002-9947-99-02219-9
[13] L. L. Stachó, A short proof of the fact that biholomorphic automorphisms of the unit ball in certain Lp spaces are linear, Acta Sci. Math., 41 (1979) 381–383. · Zbl 0432.58006
[14] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pac. J. Math. 33 (1970), 241–248. · Zbl 0196.09601 · doi:10.2140/pjm.1970.33.241
[15] T. J. Suffridge, Starlike and convex maps in Banach spaces, Pac. J. Math. 46 (1973), 575–589. · Zbl 0263.30016 · doi:10.2140/pjm.1973.46.575
[16] T. J. Suffridge, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Complex Analysis, Kentucky, 1976, Springer-Verlag Lecture Notes in Mathematics 599 (1977), 146–159.
[17] E. C. Tarabusi, Convex maps in Lp spaces, Rend. Sem. Mat. Univers. Politecn. Torino 44 (1986), 365–382. · Zbl 0645.46038
[18] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964. · Zbl 0129.37203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.