×

The Gelfand-Phillips and Dunford-Pettis type properties in bimodules of measurable operators. (English) Zbl 07905994

Summary: We fully characterize noncommutative symmetric spaces \(E(\mathcal{M},\tau )\) affiliated with a semifinite von Neumann algebra \(\mathcal{M}\) equipped with a faithful normal semifinite trace \(\tau\) on a (not necessarily separable) Hilbert space having the Gelfand-Phillips property and the WCG-property. The complete list of their relations with other classical structural properties (such as the Dunford-Pettis property, the Schur property and their variations) is given in the general setting of noncommutative symmetric spaces.

MSC:

46L52 Noncommutative function spaces
46B03 Isomorphic theory (including renorming) of Banach spaces
47B07 Linear operators defined by compactness properties
46L10 General theory of von Neumann algebras
46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
Full Text: DOI

References:

[1] Albiac, Fernando, Topics in Banach space theory, Graduate Texts in Mathematics, xii+373 pp., 2006, Springer, New York · Zbl 1094.46002
[2] Aliprantis, Charalambos D., Positive operators, Pure and Applied Mathematics, xvi+367 pp., 1985, Academic Press, Inc., Orlando, FL · Zbl 0608.47039
[3] Amir, D., The structure of weakly compact sets in Banach spaces, Ann. of Math. (2), 35-46, 1968 · Zbl 0164.14903 · doi:10.2307/1970554
[4] Aqzzouz, Belmesnaoui, Weak and almost Dunford-Pettis operators on Banach lattices, Demonstratio Math., 165-179, 2013 · Zbl 1280.46010
[5] Astashkin, Sergey V., Functional analysis and geometry: Selim Grigorievich Krein centennial. Rearrangement invariant spaces satisfying Dunford-Pettis criterion of weak compactness, Contemp. Math., 45-59, [2019] ©2019, Amer. Math. Soc., [Providence], RI · Zbl 1443.46018 · doi:10.1090/conm/733/14732
[6] Astashkin, Sergey V., Cesaro mean convergence of martingale differences in rearrangement invariant spaces, Positivity, 387-406, 2008 · Zbl 1160.46020 · doi:10.1007/s11117-007-2146-y
[7] Astashkin, S. V., Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl., 1231-1258, 2007 · Zbl 1126.46005 · doi:10.1016/j.jmaa.2007.03.040
[8] Arazy, Jonathan, Basic sequences, embeddings, and the uniqueness of the symmetric structure in unitary matrix spaces, J. Functional Analysis, 302-340, 1981 · Zbl 0457.47035 · doi:10.1016/0022-1236(81)90052-5
[9] Bennett, Colin, Interpolation of operators, Pure and Applied Mathematics, xiv+469 pp., 1988, Academic Press, Inc., Boston, MA · Zbl 0647.46057
[10] Borwein, J., Characterizations of Banach spaces via convex and other locally Lipschitz functions, Acta Math. Vietnam., 53-69, 1997 · Zbl 0920.46004
[11] Buhvalov, A. V., Locally convex spaces that are generated by weakly compact sets, Vestnik Leningrad. Univ., 11-17, 160, 1973
[12] Buhvalov, A. V., Mathematical analysis, Vol. 18 (Russian). Normed lattices, Itogi Nauki i Tehniki, 125-184, 1980, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow · Zbl 0453.46021
[13] Buhvalov, A. V., Banach lattices — some Banach aspects of the theory, Uspekhi Mat. Nauk, 137-183, 1979
[14] Bourgain, Jean, Limited operators and strict cosingularity, Math. Nachr., 55-58, 1984 · Zbl 0601.47019 · doi:10.1002/mana.19841190105
[15] Bunce, L. J., The Dunford-Pettis property in the predual of a von Neumann algebra, Proc. Amer. Math. Soc., 99-100, 1992 · Zbl 0810.46060 · doi:10.2307/2159300
[16] Carri\'{o}n, H., A stronger Dunford-Pettis property, Studia Math., 205-216, 2008 · Zbl 1149.46009 · doi:10.4064/sm184-3-1
[17] Castillo, J. M. F., On the Dunford-Pettis property in Banach spaces, Acta Univ. Carolin. Math. Phys., 5-12, 1994 · Zbl 0829.46007
[18] Chen, Jin Xi, Almost limited sets in Banach lattices, J. Math. Anal. Appl., 547-553, 2014 · Zbl 1353.46015 · doi:10.1016/j.jmaa.2013.10.085
[19] Chen, Jin Xi, Domination by positive weak* Dunford-Pettis operators on Banach lattices, Bull. Aust. Math. Soc., 311-318, 2014 · Zbl 1348.47030 · doi:10.1017/S000497271400032X
[20] Chilin, V. I., The Kadec-Klee property in symmetric spaces of measurable operators, Israel J. Math., 203-219, 1997 · Zbl 0871.46034 · doi:10.1007/BF02774037
[21] Chilin, Vladimir I., Local uniform and uniform convexity of noncommutative symmetric spaces of measurable operators, Math. Proc. Cambridge Philos. Soc., 355-368, 1992 · Zbl 0767.46039 · doi:10.1017/S0305004100075459
[22] Chilin, V. I., Weak convergence in noncommutative symmetric spaces, J. Operator Theory, 35-65, 1994 · Zbl 0836.46057
[23] Chu, Cho-Ho, The Dunford-Pettis property in \(C^*\)-algebras, Studia Math., 59-64, 1990 · Zbl 0734.46034 · doi:10.4064/sm-97-1-59-64
[24] Conway, John B., A course in functional analysis, Graduate Texts in Mathematics, xiv+404 pp., 1985, Springer-Verlag, New York · Zbl 0558.46001 · doi:10.1007/978-1-4757-3828-5
[25] Czerwi\'{n}ska, Ma\l gorzata, Geometric properties of noncommutative symmetric spaces of measurable operators and unitary matrix ideals, Comment. Math., 45-122, 2017 · Zbl 1416.46016 · doi:10.14708/cm.v57i1.3291
[26] Diestel, Joseph, Geometry of Banach spaces-selected topics, Lecture Notes in Mathematics, Vol. 485, xi+282 pp., 1975, Springer-Verlag, Berlin-New York · Zbl 0307.46009
[27] Diestel, Joe, Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces. A survey of results related to the Dunford-Pettis property, Contemp. Math., 15-60, 1979, Amer. Math. Soc., Providence, RI · Zbl 0571.46013
[28] Diestel, Joseph, Sequences and series in Banach spaces, Graduate Texts in Mathematics, xii+261 pp., 1984, Springer-Verlag, New York · Zbl 0542.46007 · doi:10.1007/978-1-4612-5200-9
[29] Diestel, J., Vector measures, Mathematical Surveys, No. 15, xiii+322 pp., 1977, American Mathematical Society, Providence, RI · Zbl 0369.46039
[30] Dirksen, Sjoerd, Rosenthal inequalities in noncommutative symmetric spaces, J. Funct. Anal., 2890-2925, 2011 · Zbl 1267.46076 · doi:10.1016/j.jfa.2011.07.015
[31] Dobrakov, Ivan, On representation of linear operators on \(C_0\,(T,\,\text{X})\), Czechoslovak Math. J., 13-30, 1971 · Zbl 0225.47018
[32] Dodds, Peter G., Weakly compact subsets of symmetric operator spaces, Math. Proc. Cambridge Philos. Soc., 169-182, 1991 · Zbl 0767.46040 · doi:10.1017/S0305004100070225
[33] Dodds, Peter G., Noncommutative K\"{o}the duality, Trans. Amer. Math. Soc., 717-750, 1993 · Zbl 0801.46074 · doi:10.2307/2154295
[34] Dodds, P. G., Properties \((\text{u})\) and \((\text{V}^*)\) of Pelczynski in symmetric spaces of \(\tau \)-measurable operators, Positivity, 571-594, 2011 · Zbl 1251.46033 · doi:10.1007/s11117-011-0127-7
[35] Dodds, P. G., The noncommutative Yosida-Hewitt decomposition revisited, Trans. Amer. Math. Soc., 6425-6457, 2012 · Zbl 1303.46054 · doi:10.1090/S0002-9947-2012-05569-3
[36] Dodds, P. G., Normed K\"{o}the spaces: a noncommutative viewpoint, Indag. Math. (N.S.), 206-249, 2014 · Zbl 1318.46041 · doi:10.1016/j.indag.2013.01.009
[37] Dodds, P. G., Sets of uniformly absolutely continuous norm in symmetric spaces of measurable operators, Trans. Amer. Math. Soc., 4315-4355, 2016 · Zbl 1362.46063 · doi:10.1090/tran/6477
[38] P. Dodds, B. de Pagter, and F. Sukochev, Noncommutative integration and operator theory, Birkh\"auser Cham, Progress in Mathematics, vol. 349, Springer Nature Switzerland AG, 2023, https://link.springer.com/book/9783031496530. · Zbl 07813654
[39] Dodds, P. G., Weak compactness criteria in symmetric spaces of measurable operators, Math. Proc. Cambridge Philos. Soc., 363-384, 2001 · Zbl 1004.46038 · doi:10.1017/S0305004101005114
[40] Drewnowski, Lech, On Banach spaces with the Gel\cprime fand-Phillips property, Math. Z., 405-411, 1986 · Zbl 0629.46020 · doi:10.1007/BF01229808
[41] Dunford, Nelson, Linear operations on summable functions, Trans. Amer. Math. Soc., 323-392, 1940 · Zbl 0023.32902 · doi:10.2307/1989960
[42] Emmanuele, G., Gel\cprime fand-Phillips property in a Banach space of vector valued measures, Math. Nachr., 21-23, 1986 · Zbl 0622.46026 · doi:10.1002/mana.19861270103
[43] Fabian, M., Inner characterizations of weakly compactly generated Banach spaces and their relatives, J. Math. Anal. Appl., 419-455, 2004 · Zbl 1063.46013 · doi:10.1016/j.jmaa.2004.02.015
[44] Fabian, Mari\'{a}n, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Math\'{e}matiques de la SMC, x+451 pp., 2001, Springer-Verlag, New York · Zbl 0981.46001 · doi:10.1007/978-1-4757-3480-5
[45] Fack, Thierry, Generalized \(s\)-numbers of \(\tau \)-measurable operators, Pacific J. Math., 269-300, 1986 · Zbl 0617.46063
[46] Grothendieck, A., Sur les applications lin\'{e}aires faiblement compactes d’espaces du type \(C(K)\), Canad. J. Math., 129-173, 1953 · Zbl 0050.10902 · doi:10.4153/cjm-1953-017-4
[47] Huang, Jinghao, (Non-)Dunford-Pettis operators on noncommutative symmetric spaces, J. Funct. Anal., Paper No. 109443, 29 pp., 2022 · Zbl 1491.46059 · doi:10.1016/j.jfa.2022.109443
[48] Huang, Jinghao, Isomorphic classification of \(L_{p, q}\)-spaces, II, J. Funct. Anal., Paper No. 108994, 34 pp., 2021 · Zbl 1473.46038 · doi:10.1016/j.jfa.2021.108994
[49] J. Huang and F. Sukochev, Derivations with values in noncommutative symmetric spaces, C. R. Math. Acad. Sci. Paris 361 (2023), 1357-1365. · Zbl 07811802
[50] J. Huang and F. Sukochev, For which noncommutative function spaces must a derivation be inner?, preprint.
[51] Jaramillo, Jes\'{u}s Angel, Sequential convergences and Dunford-Pettis properties, Ann. Acad. Sci. Fenn. Math., 467-475, 2000 · Zbl 0969.46031
[52] de Jonge, Ep, The semi-\(M\) property for normed Riesz spaces, Compositio Math., 147-172, 1977 · Zbl 0345.46009
[53] Kadison, Richard V., Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, xv+398 pp., 1983, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York · Zbl 0518.46046
[54] Kalton, N. J., Symmetric norms and spaces of operators, J. Reine Angew. Math., 81-121, 2008 · Zbl 1152.47014 · doi:10.1515/CRELLE.2008.059
[55] Kami\'{n}ska, Anna, The Dunford-Pettis property for symmetric spaces, Canad. J. Math., 789-803, 2000 · Zbl 0987.46034 · doi:10.4153/CJM-2000-033-9
[56] Kami\'{n}ska, Anna, The Schur and (weak) Dunford-Pettis properties in Banach lattices, J. Aust. Math. Soc., 251-278, 2002 · Zbl 1031.46020 · doi:10.1017/S144678870000882X
[57] Kre\u{\i }n, S. G., Interpolation of linear operators, Translations of Mathematical Monographs, xii+375 pp., 1982, American Mathematical Society, Providence, RI · Zbl 0493.46058
[58] Leung, Denny H., On the weak Dunford-Pettis property, Arch. Math. (Basel), 363-364, 1989 · Zbl 0641.46005 · doi:10.1007/BF01194411
[59] Lin, Pei-Kee, K\"{o}the-Bochner function spaces, xiv+370 pp., 2004, Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 1054.46003 · doi:10.1007/978-0-8176-8188-3
[60] Lindenstrauss, Joram, Symposium on Infinite-Dimensional Topology. Weakly compact sets-their topological properties and the Banach spaces they generate, Ann. of Math. Stud., No. 69, 235-273, 1967, Princeton Univ. Press, Princeton, NJ · Zbl 0232.46019
[61] Lindenstrauss, Joram, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], x+243 pp., 1979, Springer-Verlag, Berlin-New York · Zbl 0403.46022
[62] Lord, Steven, Singular traces, De Gruyter Studies in Mathematics, xvi+452 pp., 2013, De Gruyter, Berlin · Zbl 1275.47002
[63] Zaanen, A. C., Riesz spaces. II, North-Holland Mathematical Library, xi+720 pp., 1983, North-Holland Publishing Co., Amsterdam · Zbl 0519.46001
[64] Lozanovski\u{\i }, G. Ya., Mappings of Banach lattices of measurable functions, Izv. Vyssh. Uchebn. Zaved. Mat., 84-86, 1978 · Zbl 0397.46024
[65] Medzhitov, A. M., Mathematical analysis and algebra (Russian). Separability of noncommutative symmetric spaces, 38-43, 97, 1986, Tashkent. Gos. Univ., Tashkent · Zbl 0761.46052
[66] Meyer-Nieberg, Peter, Banach lattices, Universitext, xvi+395 pp., 1991, Springer-Verlag, Berlin · Zbl 0743.46015 · doi:10.1007/978-3-642-76724-1
[67] Nelson, Edward, Notes on noncommutative integration, J. Functional Analysis, 103-116, 1974 · Zbl 0292.46030 · doi:10.1016/0022-1236(74)90014-7
[68] Oikhberg, Timur, Domination of operators in the noncommutative setting, Studia Math., 35-67, 2013 · Zbl 1296.47033 · doi:10.4064/sm219-1-3
[69] Pethe, Prakash, Note on Dunford-Pettis property and Schur property, Indiana Univ. Math. J., 91-92, 1978 · Zbl 0344.46040 · doi:10.1512/iumj.1978.27.27008
[70] Pfitzner, H., Weak compactness in the dual of a \(C^\ast \)-algebra is determined commutatively, Math. Ann., 349-371, 1994 · Zbl 0791.46035 · doi:10.1007/BF01459739
[71] R\"{a}biger, Frank, Beitr\"{a}ge zur Strukturtheorie der Grothendieck-R\"{a}ume, Sitzungsberichte der Heidelberger Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse [Reports of the Heidelberg Academy of Science. Section for Mathematics and Natural Sciences], 78 pp., 1985, Springer-Verlag, Berlin · Zbl 0597.46021 · doi:10.1007/978-3-642-45612-1
[72] Retbi, Abderrahman, On the class of positive almost \(weak^\star\) Dunford-Pettis operators, Comment. Math. Univ. Carolin., 347-354, 2015 · Zbl 1349.46021 · doi:10.14712/1213-7243.2015.128
[73] Rosenthal, Haskell P., The heredity problem for weakly compactly generated Banach spaces, Compositio Math., 83-111, 1974 · Zbl 0298.46013
[74] J. A. Sanchez, Operators on Banach lattices, Ph.D. Thesis, Complutense University, Madrid, 1985 (in Spanish).
[75] Schechter, Martin, Principles of functional analysis, Graduate Studies in Mathematics, xxii+425 pp., 2002, American Mathematical Society, Providence, RI · doi:10.1090/gsm/036
[76] T. Schlumprecht, Limited sets in Banach spaces, Ph.D. Thesis, M\"unchen, 1987.
[77] Schur, J., \"{U}ber lineare Transformationen in der Theorie der unendlichen Reihen, J. Reine Angew. Math., 79-111, 1921 · JFM 47.0197.01 · doi:10.1515/crll.1921.151.79
[78] Semenov, E. M., Sums and intersections of symmetric operator spaces, J. Math. Anal. Appl., 742-755, 2014 · Zbl 1323.47081 · doi:10.1016/j.jmaa.2013.12.039
[79] F. Sukochev, Symmetric spaces of measurable operators on finite von Neumann algebras, Ph.D. Thesis, Tashkent State University, 1988.
[80] Sukochev, F. A., Linear-topological classification of separable \(L_p\)-spaces associated with von Neumann algebras of type I, Israel J. Math., 137-156, 2000 · Zbl 0962.46046 · doi:10.1007/BF02810584
[81] Takesaki, Masamichi, Theory of operator algebras. I, vii+415 pp., 1979, Springer-Verlag, New York-Heidelberg · Zbl 0436.46043
[82] Wnuk, Witold, Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena, 227-236, 1994 · Zbl 0805.46023
[83] W. Wnuk, Banach lattices with order continuous norms, Advanced Topics in Mathematics, Adam Mickiewicz Univ., Poznan, Polish Scientific Publishers PWN, 1999. · Zbl 0948.46017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.