×

Backward perturbation analysis and relative algorithms for nonsymmetric linear systems with multiple right-hand sides. (English) Zbl 1513.65123

MSC:

65F45 Numerical methods for matrix equations
15A24 Matrix equations and identities

Software:

GMBACK; VanHuffel
Full Text: DOI

References:

[1] K. Jbilou, A. Messaoudi and H. Sadok, Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math. 31 (1999), 49-63. · Zbl 0935.65024
[2] E. M. Kasenally and V. Simoncini, Analysis of a minimum perturbation algorithm for nonsymmetric linear systems, SIAM J. Numer. Anal. 34(1) (1997), 48-66. · Zbl 0873.65029
[3] W. Arnoldi, The principle of minimised iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951), 17-29. · Zbl 0042.12801
[4] B. Vital, Etude de quelques méthodes de résolution de problémes linéaires de grande taille sur multiprocesseur, Ph. D. Thesis, Univérsité de Rennes, Rennes, France, 1990.
[5] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van Der Vorst, Template for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1993. · Zbl 0814.65030
[6] A. Ben-Israel and T. N. E. Greville, Generalised Inverses: Theory and Applications, Wiley-Interscience, New York, 1974. · Zbl 0305.15001
[7] J. W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits and Systems, IEEE Trans. Circuits and Systems 25 (1978), 772-781. · Zbl 0397.93009
[8] P. E. Gill and W. Murray, The computation of Lagrange multiplier estimates for constrained minimisation, Math. Program. 17 (1979), 32-60. · Zbl 0423.90073
[9] G. H. Golub and C. F. Van Loan, An analysis of the total least squares problem, SIAM J. Numer. Anal. 17 (1980), 883-893. · Zbl 0468.65011
[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The John Hopkins University Press, Baltimore, MD, 1990.
[11] E. M. Kasenally, GMBACK: a generalised minimum backward error algorithm for nonsymmetric linear systems, SIAM J. Sci. Comput. 16 (1995), 698-719. · Zbl 0823.65029
[12] Backward Perturbation Analysis and Relative Algorithms … 987
[13] N. M. Nachtigal, L. Reichel and L. N. Trefethen, A hybrid GMRES algorithm for nonsymmetric matrix iterations, SIAM J. Matrix Anal. Appl. 13 (1992), 796-825. · Zbl 0757.65035
[14] A. Nikishin and A. Yeremin, Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers, I: general iterative scheme, SIAM J. Matrix Anal. Appl. 16 (2006), 1135-1153. · Zbl 0837.65029
[15] L. Reichel and L. N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl. 162/164 (1992), 153-185. · Zbl 0748.15010
[16] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981), 105-126. · Zbl 0474.65019
[17] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, U.K., 1992. · Zbl 0991.65039
[18] Y. Saad and M. H. Schultz, GMRES: a generalised minimum residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), 856-869. · Zbl 0599.65018
[19] V. Simonconi and E. Gallopoulos, An iterative method for nonsymmetric systems with multiple right-hand sides, SIAM J. Sci. Comput. 15 (1995), 917-933. · Zbl 0831.65037
[20] X. D. Yang and W. H. Huang, Backward error analysis of the matrix equations for Sylvester and Lyapunov, J. Sys. Sci. Math. Sci. 28(5) (2008), 524-534. · Zbl 1174.65392
[21] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990. · Zbl 0706.65013
[22] L. N. Trefethen, Approximation Theory and Numerical Linear Algebra, Chapman and Hall, London, 1990. · Zbl 0747.41005
[23] S. Van Huffel and J. Vandwalle, Algebraic connections between the least squares and total least squares problems, Numer. Math. 55 (1989), 431-449. · Zbl 0663.65038
[24] S. Van Huffel and J. Vandwalle, The total least squares problem, computational aspects and analysis, Frontiers in Applied Mathematics, Volume 9, SIAM, Philadelphia, PA, 1991. · Zbl 0789.62054
[25] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965. · Zbl 0258.65037
[26] P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput. 12 (1991), 58-78. · Zbl 0719.65022
[27] Zhanshan Yang and Xilan Liu 988
[28] T. Chan and W. Wang, Analysis of projection methods for solving linear systems with multiple right-hand sides, SIAM J. Sci. Comput. 18 (1997), 1698-1721. · Zbl 0888.65033
[29] J. Cullum and W. E. Donath, A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices, Proc. of IEEE Conf. Decision and Control, Phoenix, 1974.
[30] G. H. Golub and R. R. Underwood, The block Lanczos method for computing eigenvalues, J. R. Rice, ed., Mathematical Software, Vol. 3, Academic Press, New York, 1977, pp. 364-377. · Zbl 0407.68040
[31] M. Malhotra, R. Freund and P. M. Pinsky, Iterative solution of multiple radiation and scattering problems in structural acoustics using a block quasi-minimal residual algorithm, Comput. Methods Appl. Mech. Engrg. 146 (1997), 173-196. · Zbl 0901.76059
[32] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appl. 29 (1980), 293-322. · Zbl 0426.65011
[33] B. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear equations, Linear Algebra Appl. 29 (1980), 323-346. · Zbl 0431.65016
[34] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right-hand sides, Math. Comp. 48 (1987), 651-662. · Zbl 0615.65038
[35] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Press, New York, 1995. · Zbl 1002.65042
[36] M. Sadkane, Block Arnoldi and Davidson methods for unsymmetric large eigenvalue problems, Numer. Math. 64 (1993), 687-706. · Zbl 0791.65021
[37] C. Smith, A. Peterson and R. Mittra, A conjugate gradient algorithm for treatment of multiple incident electromagnetic fields, IEEE Trans. Antennas Propagation 37 (1989), 1490-1493.
[38] V. Simoncini and E. Gallopoulos, Convergence properties of block GMRES and matrix polynomial, Linear Algebra Appl. 247 (1994), 97-119. · Zbl 0861.65023
[39] B. Y. Wang and F. Z. Zang, Schur complements and matrix inequalities of Hadamard products, Linear Multilinear Algebra 43 (1997), 315-326. · Zbl 0893.15008
[40] P. Lancaster, An explicit solutions of linear matrix equations, SIAM Rev. 12 (1970), 544-566. · Zbl 0209.06502
[41] Backward Perturbation Analysis and Relative Algorithms … 989
[42] B. Y. Wan and F. Z. Zang, Trace and eigenvalue inequalities for ordinary and Hadamard product of positive semidefinite Hermitian matrices, SIAM J. Matrix Anal. Appl. 16(4) (1995), 1173-1183. · Zbl 0855.15009
[43] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, England, 1991, pp. 239-293. · Zbl 0729.15001
[44] J. G. Sun and S. F. Xu, Perturbation analysis of the maximal solution of the matrix equation, Π, Linear Algebra Appl. 362 (2003), 211-228. · Zbl 1020.15012
[45] J. G. Sun, Perturbations Analysis of Matrix, 2nd Press, Peking, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.