×

Extensions of Lieb’s concavity theorem. (English) Zbl 1157.47305

Summary: The operator function \((A,B) \rightarrow \operatorname{Tr} f(A,B)(K^*)K\), defined in pairs of bounded selfadjoint operators in the domain of a function \(f\) of two real variables, is convex for every Hilbert-Schmidt operator \(K\) if and only if \(f\) is operator convex. We obtain, as a special case, a new proof of Lieb’s concavity theorem for the function \((A,B)\rightarrow \operatorname{Tr} A^{p}K^{*}B^{q}K\), where \(p\) and \(q\) are non-negative numbers with sum \(p+q \leq 1\). In addition, we prove concavity of the operator function
\[ (A,B)\rightarrow \operatorname{Tr} \left[\frac{A}{A+\mu_1}K^*\frac{B}{B+\mu_2}K\right] \]
in its natural domain \(D_{2}(\mu_{1},\mu_{2})\).

MSC:

47A60 Functional calculus for linear operators
47A63 Linear operator inequalities
15B48 Positive matrices and their generalizations; cones of matrices
15A69 Multilinear algebra, tensor calculus
49J52 Nonsmooth analysis

References:

[1] T. Ando, Topics on Operator Inequalities (Sapporo, 1978. Unpublished notes). · Zbl 0388.47024
[2] T. Ando, Concavity of certain maps of positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26:203–241 (1979). · Zbl 0495.15018 · doi:10.1016/0024-3795(79)90179-4
[3] J. Bendat and S. Sherman, Monotone and convex operator functions. Trans. Amer. Math. Soc. 79:58–71 (1955). · Zbl 0064.36901 · doi:10.1090/S0002-9947-1955-0082655-4
[4] R. Bhatia. Matrix analysis (New York, Springer, 1997). · Zbl 0863.15001
[5] M. Sh. Birman and M. Z. Solomyak, Notes on the function of spectral shift. Zap. Nauchn. Semin. LOMI 27:33–46 (1972). (Russian). · Zbl 0329.47009
[6] M. Sh. Birman and M. Z. Solomyak, Double Stieltjes operator integrals, III. Problems of Math. Physics, no. 6, pp. 27–53, (1973). (Russian).
[7] H. Epstein, Remarks on two theorems of E. Lieb. Comm. Math. Phys. 31:317–325 (1973). · Zbl 0257.46089
[8] T. M. Flett, Differential Analysis (Cambridge, Cambridge University Press, 1980). · Zbl 0442.34002
[9] F. Hansen, Operator convex functions of several variables. Publ. RIMS, Kyoto Univ. 33:443–463 (1997). · Zbl 0902.47013
[10] F. Hansen, Operator inequalities associated with Jensen’s inequality. In: T. M. Rassias (edr.), Survey on Classical Inequalities (Kluwer Academic Publishers, 2000) pp. 67–98. · Zbl 1040.47012
[11] F. Hansen, Operator monotone functions of several variables. Math. Ineq. Appl. 6:1–17 (2003). · Zbl 1035.47005
[12] F. Hansen, Characterization of symmetric monotone metrics on the the state space of quantum systems. arXiv:math-ph/0601056 v3, pp. 1–12, 2006. To appear in Quantum Information and Computation.
[13] F. Hansen, Trace functions as Laplace transforms. J. Math. Phys. 47:(043504) 1–11 (2006). · Zbl 1111.47022
[14] F. Hansen and J. Tomiyama, Differential analysis of matrix convex functions. arXiv:math. OA/0601290 v1, pp. 1–17, (2006). To appear in Linear Algebra Appl.
[15] F. Hiai and H. Kosaki, Means of Hilbert space operators. Lecture Notes in Mathematics. (Berlin, Springer, 2003). · Zbl 1048.47001
[16] A. Korányi, On some classes of analytic functions of several variables. Trans Amer. Math. Soc. 101:520–554 (1961).
[17] F. Kubo and T. Ando, Means of positive linear operators. Math. Ann. 246:205–224 (1980). · doi:10.1007/BF01371042
[18] E. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture. Advances in Math. 11:267–288 (1973). · Zbl 0267.46055 · doi:10.1016/0001-8708(73)90011-X
[19] E. H. Lieb and M. B. Ruskai, Some operator inequalities of the Schwarz type. Adv. in Math. 12:269–273 (1974). · Zbl 0274.46045 · doi:10.1016/S0001-8708(74)80004-6
[20] N. E. Nörlund, Vorlesungen Über Differenzenrechnung (Berlin, Springer Verlag, 1924). · JFM 50.0318.04
[21] M. Ohya and D. Petz, Quantum Entropy and its Use (Heidelberg, Springer Verlag, 1993). · Zbl 0891.94008
[22] G. K. Pedersen, Some operator monotone functions. Proc. Amer. Math. Soc. 36:309–310 (1972). · Zbl 0256.47019
[23] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8:159–170 (1975). · Zbl 0327.46032 · doi:10.1016/0034-4877(75)90061-0
[24] M. B. Ruskai. Lieb’s simple proof of concavity of (A,B)r A p K ! B 1 K and remarks on related inequalities. arXiv:quant-ph/0404126 v3, pp. 1–14, (2005). · Zbl 1077.81509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.