×

Numerical simulation of blowup in nonlocal reaction-diffusion equations using a moving mesh method. (English) Zbl 1166.65067

Summary: We implement the moving mesh partial differential equation (PDE) method for simulating the blowup in reaction-diffusion equations with temporal and spacial nonlinear nonlocal terms. By a time-dependent transformation, the physical equation is written into a Lagrangian form with respect to the computational variables. The time-dependent transformation function satisfies a parabolic partial differential equation – usually called moving mesh PDE (MMPDE).
The transformed physical equation and MMPDE are solved alternately by a central finite difference method combined with a backward time-stepping scheme. The integration time steps are chosen to be adaptive to the blowup solution by employing a simple and efficient approach. The monitor function in MMPDEs plays a key role in the performance of the moving mesh PDE method. The dominance of equidistribution is utilized to select the monitor functions and a formal analysis is performed to check the principle. A variety of numerical examples show that the blowup profiles can be expressed correctly in the computational coordinates and the blowup rates are determined by the tests.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
45G10 Other nonlinear integral equations

Software:

MOVCOL4; DASSL
Full Text: DOI

References:

[1] Bebernes, J. W.; Talaga, P., Nonlocal problems modelling shear banding, Comm. Appl. Nonlinear Anal., 3, 79-103 (1996) · Zbl 0858.35052
[2] Bebernes, J. W.; Li, C.; Talaga, P., Single-point blowup for nonlocal parabolic problems, Physica D, 134, 48-60 (1999) · Zbl 0952.74028
[3] Bandle, C.; Brunner, H., Blowup in diffusion equations: A survey, J. Comput. Appl. Math., 97, 3-22 (1998) · Zbl 0932.65098
[4] Barenblatt, G. I., Scaling, Self-Similarity, and Intermediate Asymptotics (1996), Cambridge University Press · Zbl 0907.76002
[5] Budd, C. J.; Carretero-González, R.; Russell, R. D., Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys., 202, 463-487 (2005) · Zbl 1063.65096
[6] Budd, C.; Dold, B.; Stewart, A., Blowup in a partial differential equation with conserved first integral, SIAM J. Appl. Math., 53, 718-742 (1993) · Zbl 0784.35009
[7] Budd, C. J.; Huang, W. Zh.; Russell, R. D., Moving mesh methods for problems with blow-up, SIAM J. Sci. Comput., 17, 305-327 (1996) · Zbl 0860.35050
[8] Chen, C.; Shih, T., (Finite Element Methods for Integro-Differential Equations. Finite Element Methods for Integro-Differential Equations, Series on Applied Math., vol. 9 (1998), World Scientific: World Scientific Singapore) · Zbl 0909.65142
[9] Cushing, J. M., (Integro-Differential Equations and Delay Models in Population Dynamics. Integro-Differential Equations and Delay Models in Population Dynamics, Lecture Notes Biomath., vol. 20 (1977), Springer-Verlag: Springer-Verlag New York) · Zbl 0363.92014
[10] de Boor, C., Good approximation by splines with variable knots II, (Springer Lecture Notes Series, vol. 363 (1973), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0343.65005
[11] Deng, W. H., Short memory principle and a predictor-corrector approach for fractional differential equations, J. Comput. Appl. Math., 206, 174-188 (2007) · Zbl 1121.65128
[12] Deng, W. H., Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227, 1510-1522 (2007) · Zbl 1388.35095
[13] Fila, M., Boundedness of global solutions of nonlocal parabolic equations, Nonlinear Anal., 30, 877-885 (1997) · Zbl 0902.35055
[14] Fujita, Y., Integral equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27, 309-321 (1990), 28 (1990), pp. 797-804 · Zbl 0790.45009
[15] Hirata, D., Blow-up for a class of semilinear integro-differential equations of parabolic type, Math. Methods Appl. Sci., 22, 1087-1100 (1999) · Zbl 0936.45005
[16] Huang, W. Zh.; Ma, J.; Russell, R. D., A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations, J. Comput. Phys., 227, 6532-6552 (2008) · Zbl 1145.65080
[17] Huang, W. Zh.; Ren, Y.; Russell, R. D., Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle, SIAM J. Numer. Anal., 31, 709-730 (1994) · Zbl 0806.65092
[18] Y. Jiang, J. Ma, K. Xiang, A moving mesh method for partial integro-differential equation, J. Comput. Math. (2008) (submitted for publication); Y. Jiang, J. Ma, K. Xiang, A moving mesh method for partial integro-differential equation, J. Comput. Math. (2008) (submitted for publication)
[19] Khozanov, A., Parabolic equations with nonlocal nonlinear source, Siberian Math. J., 35, 545-556 (1994)
[20] Li, Y.; Xie, C., Blow-up for semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., 55, 15-27 (2004) · Zbl 1099.35043
[21] L.R. Petzold, A description of DASSL: A differential/algebraic system solver, Sandia Labs Report SAND82-8637, Livermore, CA, 1982; L.R. Petzold, A description of DASSL: A differential/algebraic system solver, Sandia Labs Report SAND82-8637, Livermore, CA, 1982
[22] Roberts, C. A., Recent results on blow-up and quenching for nonlinear Volterra equations, J. Comput. Appl. Math., 205, 736-743 (2007) · Zbl 1114.35096
[23] Roberts, C. A.; Olmstead, W. E., Growth rates for blow-up solutions of nonlinear Volterra equations, Quart. Appl. Math., 54, 153-159 (1996) · Zbl 0916.45007
[24] Russell, R. D.; Williams, J. F.; Xu, X., MOVCOL4: A moving mesh code for fourth-order time-dependent partial differential equations, SIAM J. Sci. Comput., 29, 197-220 (2007) · Zbl 1138.65095
[25] Soheili, A. R.; Stockie, J. M., A moving mesh method with variable mesh relaxation time, Appl. Numer. Math., 58, 249-263 (2008) · Zbl 1135.65366
[26] Souplet, P., Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29, 1301-1334 (1998) · Zbl 0909.35073
[27] Souplet, P., Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equation, 153, 374-406 (1999) · Zbl 0923.35077
[28] Souplet, P., Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., 55, 28-31 (2004) · Zbl 1099.35049
[29] Wang, M.; Wang, Y., Properties of positive solutions for non-local reaction-diffusion problems, Math. Methods Appl. Sci., 19, 1141-1156 (1996) · Zbl 0990.35066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.