×

Threshold for shock formation in the hyperbolic Keller-Segel model. (English) Zbl 1330.35250

Summary: We identify a sub-threshold for finite time shock formation in solutions to the one-dimensional hyperbolic Keller-Segel model. The main result states that under some assumptions on the initial potential, if the slope of the initial density is above a threshold at even one location, the solution must become discontinuous in finite time.

MSC:

35L67 Shocks and singularities for hyperbolic equations
35L60 First-order nonlinear hyperbolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] Dolak, Y.; Schmeiser, C., The Keller-Segel model with logistic sensitivity function and small diffusivity, SIAM J. Appl. Math., 66, 286-308 (2005) · Zbl 1102.35011
[2] Keller, E. F.; Segel, L. A., Model for chemotaxis, J. Theoret. Biol., 30, 225-234 (1971) · Zbl 1170.92307
[3] Painter, K. J.; Hillen, T., Volume-filling and quorum sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10, 4, 501-543 (2002) · Zbl 1057.92013
[4] Perthame, B., (Transport Equations in Biology. Transport Equations in Biology, LN Series Frontiers in Mathematics (2007), Birkhauser) · Zbl 1185.92006
[5] Lee, Y.; Liu, H., Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics, Discrete Contin. Dyn. A, 35, 1, 323-339 (2015) · Zbl 1304.35420
[6] Kurganov, A.; Polizzi, A., Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media., 4, 3, 431-451 (2009) · Zbl 1183.76817
[7] Sopasakis, A.; Katsoulakis, M., Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66, 3, 921-944 (2006) · Zbl 1141.90014
[8] Burger, M.; Dolak, Y.; Schmeiser, C., Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6, 1, 1-28 (2008) · Zbl 1165.35471
[9] Perthame, B.; Dalibard, A., Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361, 5, 2319-2335 (2009) · Zbl 1180.35343
[10] Whitham, G. B., Linear and nonlinear waves, (Pure and Applied Mathematics (1974), Wiley-Interscience: Wiley-Interscience New York, London, Sydney) · Zbl 0373.76001
[11] Holm, D. D.; Hone, A. N.W., A class of equations with peakon and pulson solutions (with a appendix by Braden H and Byatt-Smith), J. Nonlinear Math. Phys., 12, Suppl. 1, 380-394 (2005) · Zbl 1362.35316
[12] Degasperis, A.; Procesi, M., Asymptotic integrability, (Symmetry and Perturbation Theory. In Rome (1999), World Scientific: World Scientific River Edge, NJ), 2337 · Zbl 0963.35167
[13] Liu, H., Wave breaking in a class of nonlocal dispersive wave equations, J. Nonlinear Math. Phys., 13, 3, 441-466 (2006) · Zbl 1110.35069
[14] Hamer, K., Nonlinear effects on the propagation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24, 155-168 (1971) · Zbl 0219.76088
[15] Rosenau, P., Extending hydrodynamics via the regularization of the Chapman-Enskog expansion, Phys. Rev. A, 40, 7193-7196 (1989)
[16] Liu, H.; Tadmor, E., Critical thresholds in a convolution model for nonlinear conservation laws, SIAM J. Math. Anal., 33, 930-945 (2002) · Zbl 1002.35085
[17] Hunter, J. K., Numerical solutions of some nonlinear dispersive wave equations, Lect. Appl. Math., 301-316 (1990) · Zbl 0691.76118
[18] Parkes, E. J.; Vakhneko, V. O., The calculation of multi-soliton solutions oof the Vakhnenko equation by the inverse scattering method, Chaos Solitons Fractals, 13, 1819-1826 (2002) · Zbl 1067.37106
[19] Vakhnenko, V. O., Solitions in a nonlinear model medium, J. Phys., 25, 4181-4187 (1992) · Zbl 0754.35132
[20] Kynch, G., A theory of sedimentation, Trans. Fraday Soc., 48, 66-76 (1952)
[21] Zumbrun, K., On a nonlocal dispersive equation modeling particle suspensions, Quart. Appl. Math., 57, 573-600 (1999) · Zbl 1020.35058
[22] Betancourt, F.; Burger, R.; Karlsen, K. H.; Tory, E. M., On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24, 855-885 (2011) · Zbl 1381.76368
[23] Engelberg, S.; Liu, H.; Tadmor, E., Critical thresholds in Euler-Poisson equations, Indiana Univ. Math. J., 50, 109-157 (2001) · Zbl 0989.35110
[24] Liu, H.; Tadmor, E., Spectral dynamics of the velocity gradient field in restricted fluid flows, Comm. Math. Phys., 228, 435-466 (2002) · Zbl 1031.76006
[25] Liu, H.; Tadmor, E., Critical thresholds in 2-D restricted Euler-Poisson equations, SIAM J. Appl. Math., 63, 6, 1889-1910 (2003) · Zbl 1073.35187
[26] Li, D.; Li, T., Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 6, 4, 681-694 (2011) · Zbl 1270.35313
[27] Burger, M.; DiFrancesco, M.; Dolak, Y., The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38, 1288-1315 (2006) · Zbl 1114.92008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.