×

On the best Lipschitz extension problem for a discrete distance and the discrete \(\infty \)-Laplacian. (English. French summary) Zbl 1231.49003

Summary: This paper concerns the best Lipschitz extension problem for a discrete distance that counts the number of steps. We relate this absolutely minimizing Lipschitz extension with a discrete \(\infty \)-Laplacian problem, which arises as the dynamic programming formula for the value function of some \(\epsilon \)-tug-of-war games. As in the classical case, we obtain the absolutely minimizing Lipschitz extension of a datum \(f\) by taking the limit as \(p\to \infty \) in a nonlocal \(p\)-Laplacian problem.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49J45 Methods involving semicontinuity and convergence; relaxation
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., A nonlocal \(p\)-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40, 1815-1851 (2008/2009) · Zbl 1183.35034
[2] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., The limit as \(p \to \infty\) in a nonlocal \(p\)-Laplacian evolution equation. A nonlocal approximation of a model for sandpiles, Calc. Var. Partial Differential Equations, 35, 279-316 (2009) · Zbl 1173.35022
[3] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., Nonlocal Diffusion Problems, AMS Mathematical Surveys and Monographs, vol. 165 (2010) · Zbl 1335.35104
[4] Armstrong, S. N.; Smart, Ch. K., An easy proof of Jensenʼs theorem on the uniqueness of infinity harmonic functions, Calc. Var., 37, 381-384 (2010) · Zbl 1187.35104
[5] S.N. Armstrong, Ch.K. Smart, A finite difference approach to the infinity Laplace equation and Tug-of-War games, Trans. Amer. Math. Soc., in press, http://dx.doi.org/10.1090/S0002-9947-2011-05289-X; S.N. Armstrong, Ch.K. Smart, A finite difference approach to the infinity Laplace equation and Tug-of-War games, Trans. Amer. Math. Soc., in press, http://dx.doi.org/10.1090/S0002-9947-2011-05289-X · Zbl 1239.91011
[6] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6, 551-561 (1967) · Zbl 0158.05001
[7] Aronsson, G.; Crandall, M. G.; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41, 439-505 (2004) · Zbl 1150.35047
[8] Barron, E. N.; Evans, L. C.; Jensen, R., The infinity Laplacian, Aronsson equation and their generalizations, Trans. Amer. Math. Soc., 360, 77-101 (2007) · Zbl 1125.35019
[9] Bhattacharya, T.; DiBenedetto, E.; Manfredi, J., Limit as \(p \to \infty\) of \(\Delta_p u_p = f\) and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue, 15-68 (1991)
[10] Jensen, R., Uniqueness of Lipschitz extensions: minimizing the sup-norm of the gradient, Arch. Rational Mech. Anal., 123, 51-74 (1993) · Zbl 0789.35008
[11] Juutinen, P., Absolutely minimizing Lipschitz extension on a metric space, Ann. Acad. Sci. Fenn. Math., 27, 57-67 (2002) · Zbl 1064.54027
[12] Kumagai, S., An implicit function theorem: comment, J. Optim. Theory Appl., 31, 285-288 (1980) · Zbl 0416.90063
[13] Le Gruyer, E.; Archer, J. C., Harmonious extension, SIAM J. Math. Anal., 29, 279-292 (1998) · Zbl 0915.46002
[14] Lu, G.; Wang, P., A PDE perspective of the normalized infinity Laplacian, Comm. Partial Differential Equations, 33, 1788-1817 (2008) · Zbl 1157.35388
[15] J.J. Manfredi, M. Parviainen, J.D. Rossi, Dynamic programing principle for tug-of-war games with noise, C.O.C.V., in press, doi:10.1051/COCV/2010046; J.J. Manfredi, M. Parviainen, J.D. Rossi, Dynamic programing principle for tug-of-war games with noise, C.O.C.V., in press, doi:10.1051/COCV/2010046
[16] J.J. Manfredi, M. Parviainen, J.D. Rossi, On the definition and properties of \(p\); J.J. Manfredi, M. Parviainen, J.D. Rossi, On the definition and properties of \(p\) · Zbl 1252.91014
[17] McShane, E. J., Extension of range of functions, Bull. Amer. Math. Soc., 40, 837-842 (1934) · Zbl 0010.34606
[18] Milman, V. A., Absolutely minimal extension of functions on metric spaces, Math. Sbornik, 190, 83-109 (1999) · Zbl 0931.54013
[19] Peres, Y.; Pete, G.; Somersille, S., Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones, Calc. Var. Partial Differential Equations, 38, 541-564 (2010) · Zbl 1195.91007
[20] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002
[21] Whitney, H., Analytic extension of differentiable functions defined in a closed sets, Trans. Amer. Math. Soc., 36, 63-89 (1934) · JFM 60.0217.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.