×

Radially symmetric spiral flows of the compressible Euler-Poisson system for semiconductors. (English) Zbl 1527.35419

Summary: In this paper, we study the steady flows to the compressible Euler-Poisson system for semiconductors with the nonzero angular velocity in a radially symmetric way in an annulus. The main purpose here is to elucidate the effect of the angular velocity in the structure of the steady flows. We show the well-posedness of all kinds of types of radially symmetric spiral flows including radial subsonic/supersonic/transonic flows, and further give a specific classification of the flow patterns under the assumption of various boundary conditions at the inner and the outer circle. Additionally, different from the purely radial case, the uniqueness of radial subsonic flow can not be obtained due to the nonlocal effect caused by the angular velocity, consequently we prove the uniqueness of the radial subsonic solution in the case without the semiconductor effect or with a small current assumption. Moreover, some new patterns of spiral flows with or without shock are observed, such as a smooth transonic flow and a supersonic-supersonic shock flow for a large relaxation time parameter.

MSC:

35Q81 PDEs in connection with semiconductor devices
35Q31 Euler equations
35Q60 PDEs in connection with optics and electromagnetic theory
76L05 Shock waves and blast waves in fluid mechanics
76J20 Supersonic flows
76H05 Transonic flows
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
78A35 Motion of charged particles
82D37 Statistical mechanics of semiconductors
35L60 First-order nonlinear hyperbolic equations
35B06 Symmetries, invariants, etc. in context of PDEs
35B36 Pattern formations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Ascher, U.; Markowich, P.; Pietra, P.; Schmeiser, C., A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., 1, 347-376 (1991) · Zbl 0800.76032
[2] Bae, M.; Duan, B.; Xie, C., Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46, 3455-3480 (2014) · Zbl 1316.35221
[3] Bae, M.; Duan, B.; Xie, C., Subsonic flow for the multidimensional Euler-Poisson system, Arch. Ration. Mech. Anal., 220, 155-191 (2016) · Zbl 1339.35222
[4] Bae, M.; Duan, B.; Xiao, J. J.; Xie, C., Structural stability of supersonic solutions to the Euler-Poisson system, Arch. Ration. Mech. Anal., 239, 679-731 (2021) · Zbl 1456.35136
[5] Bløtekjær, K., Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices, 17, 38-47 (1970)
[6] Chen, L.; Mei, M.; Zhang, G.; Zhang, K., Steady hydrodynamic model of semiconductors with sonic boundary and transonic doping profile, J. Differ. Equ., 269, 8173-8211 (2020) · Zbl 1509.35388
[7] Chen, L.; Mei, M.; Zhang, G.; Zhang, K., Radial solutions of the hydrodynamic model of semiconductors with sonic boundary, J. Math. Anal. Appl., 501, Article 125187 pp. (2021) · Zbl 1467.76072
[8] Chen, L.; Mei, M.; Zhang, G.; Zhang, K., Transonic steady-states of Euler-Poisson equations for semiconductor models with sonic boundary, SIAM J. Math. Anal., 54, 363-388 (2022) · Zbl 1487.35366
[9] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves (1948), Interscience Publishers, Inc.: Interscience Publishers, Inc. New York · Zbl 0041.11302
[10] Degond, P.; Markowich, P., On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3, 25-29 (1990) · Zbl 0736.35129
[11] Degond, P.; Markowich, P., A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl., 4, 87-98 (1993) · Zbl 0808.35150
[12] Feng, Y. H.; Hu, H.; Mei, M., Structural stability of interior subsonic steady-states to hydrodynamic model for semiconductors with sonic boundary (2022), submitted for publication
[13] Feng, Y. H.; Mei, M.; Zhang, G., Nonlinear structural stability and linear dynamic instability of transonic steady-states to a hydrodynamic model for semiconductors, J. Differ. Equ., 344, 131-171 (2023) · Zbl 1509.35313
[14] Gamba, I. M., Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17, 553-577 (1992) · Zbl 0748.35049
[15] Gamba, I. M.; Morawetz, C. S., A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence for potential flow, Commun. Pure Appl. Math., 49, 999-1049 (1996) · Zbl 0863.76029
[16] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (2001), Springer-Verlag: Springer-Verlag Berlin, reprint of the 1998 edition · Zbl 1042.35002
[17] Huang, F.; Mei, M.; Wang, Y.; Yu, H., Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors, SIAM J. Math. Anal., 43, 411-429 (2011) · Zbl 1227.35063
[18] Li, H. L.; Markowich, P.; Mei, M., Asymptotic behavior of solutions of the hydrodynamic model of semiconductors, Proc. R. Soc. Edinb., Sect. A, 132, 359-378 (2002) · Zbl 1119.35310
[19] Li, J.; Mei, M.; Zhang, G.; Zhang, K., Steady hydrodynamic model of semiconductors with sonic boundary: (I) subsonic doping profile, SIAM J. Math. Anal., 49, 4767-4811 (2017) · Zbl 1379.35350
[20] Li, J.; Mei, M.; Zhang, G.; Zhang, K., Steady hydrodynamic model of semiconductors with sonic boundary: (II) supersonic doping profile, SIAM J. Math. Anal., 50, 718-734 (2018) · Zbl 1380.35168
[21] Luo, T.; Rauch, J.; Xie, C.; Xin, Z., Stability of transonic shock solutions for onedimensional Euler-Poisson equations, Arch. Ration. Mech. Anal., 202, 787-827 (2011) · Zbl 1261.76055
[22] Luo, T.; Xin, Z., Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10, 419-462 (2012) · Zbl 1286.35165
[23] Markowich, P., The Steady-State Semiconductors Devices Equations (1986), Springer-Verlag: Springer-Verlag New-York
[24] Markowich, P.; Ringhofer, C. A.; Schmeiser, C., Semiconductor Equations (1990), Springer-Verlag: Springer-Verlag New-York · Zbl 0765.35001
[25] Mu, P.; Mei, M.; Zhang, K., Subsonic and supersonic steady-states of bipolar hydrodynamic model of semiconductors with sonic boundary, Commun. Math. Sci., 18, 7, 2005-2038 (2020) · Zbl 1465.35237
[26] Nishibata, S.; Suzuki, M., Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors, Arch. Osaka J. Math., 44, 639-665 (2007) · Zbl 1138.82033
[27] Selberherr, S., Analysis and Simulation of Semiconductor Device Equations (1984), Springer
[28] Peng, Y.; Violet, I., Example of supersonic solutions to a steady state Euler-Poisson system, Appl. Math. Lett., 19, 1335-1340 (2006) · Zbl 1139.35374
[29] Rosini, M. D., A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Q. Appl. Math., 63, 251-268 (2005) · Zbl 1319.82024
[30] Wei, M.; Mei, M.; Zhang, G.; Zhang, K., Smooth transonic steady-states of hydrodynamic model for semiconductors, SIAM J. Math. Anal., 53, 4908-4932 (2021) · Zbl 1487.35329
[31] Weng, S.; Xin, Z.; Yuan, H., Steady compressible radially symmetric flows with nonzero angular velocity in an annulus, J. Differ. Equ., 286, 433-454 (2021) · Zbl 1462.76124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.