×

On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity. (English) Zbl 1175.74080

Summary: The use of stabilization methods is becoming an increasingly well-accepted technique due to their success in dealing with numerous numerical pathologies that arise in a variety of applications in computational mechanics.
In this paper a multiscale finite element method technique to deal with pressure stabilization of nearly incompressibility problems in nonlinear solid mechanics at finite deformations is presented. A J2-flow theory plasticity model at finite deformations is considered. A mixed formulation involving pressure and displacement fields is used as starting point. Within the finite element discretization setting, continuous linear interpolation for both fields is considered. To overcome the Babuška-Brezzi stability condition, a multiscale stabilization method based on the orthogonal subgrid scale (OSGS) technique is introduced. A suitable nonlinear expression of the stabilization parameter is proposed. The main advantage of the method is the possibility of using linear triangular or tetrahedral finite elements, which are easy to generate and, therefore, very convenient for practical industrial applications.
Numerical results obtained using the OSGS stabilization technique are compared with results provided by the P1 standard Galerkin displacements linear triangular/tetrahedral element, P1/P1 standard mixed linear displacements/linear pressure triangular/tetrahedral element and Q1/P0 mixed bilinear/trilinear displacements/constant pressure quadrilateral/hexahedral element for 2D/3D nearly incompressible problems in the context of a nonlinear finite deformation J2 plasticity model.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Software:

COMET; GiD

References:

[1] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039
[2] Baiocchi, C.; Brezzi, F.; Franca, L. P., Virtual bubbles and Galerkin/least-square type methods, Comput. Methods Appl. Mech. Engrg., 105, 125-141 (1993) · Zbl 0772.76033
[3] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Spinger: Spinger New York · Zbl 0788.73002
[4] Brezzi, F.; Bristeau, M. O.; Franca, L. P.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Methods Appl. Mech. Engrg., 96, 117-129 (1992) · Zbl 0756.76044
[5] M. Cervera, C. Agelet de Saracibar, M. Chiumenti, COMET—a COupled MEchanical and Thermal analysis code. Data input manual, Version 5.0, Technical Report IT-308, CIMNE. Available from <http://www.cimne.upc.es; M. Cervera, C. Agelet de Saracibar, M. Chiumenti, COMET—a COupled MEchanical and Thermal analysis code. Data input manual, Version 5.0, Technical Report IT-308, CIMNE. Available from <http://www.cimne.upc.es · Zbl 1083.74584
[6] Cervera, M.; Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C., Mixed linear/linear simplicial elements for incompressible elasticity and plasticity, Comput. Methods Appl. Mech. Engrg., 192, 5249-5263 (2003) · Zbl 1054.74050
[7] Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C., Softening localization and stabilization: capture of discontinuous solutions in J2 plasticity, Int. J. Numer. Anal. Methods Geomech., 28, 373-393 (2004) · Zbl 1071.74050
[8] Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C., Shear band localization via local J2 continuum damage mechanics, Comput. Methods Appl. Mech. Engrg., 193, 849-880 (2004) · Zbl 1106.74312
[9] M. Cervera, M. Chiumenti, C. Agelet de Saracibar, Shear band localization via local J2 continuum damage mechanics, Monograph M78, CIMNE, 2003.; M. Cervera, M. Chiumenti, C. Agelet de Saracibar, Shear band localization via local J2 continuum damage mechanics, Monograph M78, CIMNE, 2003.
[10] D. Christ, M. Cervera, M. Chiumenti, C. Agelet de Saracibar, A mixed finite element formulation for incompressibility using linear displacement and pressure interpolations, Monograph 77, CIMNE, 2003.; D. Christ, M. Cervera, M. Chiumenti, C. Agelet de Saracibar, A mixed finite element formulation for incompressibility using linear displacement and pressure interpolations, Monograph 77, CIMNE, 2003.
[11] Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.; Cervera, M., A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations, Comput. Methods Appl. Mech. Engrg., 191, 5253-5264 (2002) · Zbl 1083.74584
[12] Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.; Cervera, M., A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra, Int. J. Plast., 20, 1487-1504 (2004) · Zbl 1066.74587
[13] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg., 190, 1579-1599 (2000) · Zbl 0998.76047
[14] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191, 4295-4321 (2002) · Zbl 1015.76045
[15] Codina, R.; Blasco, J., Stabilized finite element method for transient Navier-Stokes equations based on pressure gradient projection, Comput. Methods Appl. Mech. Engrg., 182, 287-300 (2000) · Zbl 0986.76037
[16] Garikipati, K.; Hughes, T. J.R., A study of strain localization in a multiple scale framework—the one dimensional problem, Comput. Methods Appl. Mech. Engrg., 159, 193-222 (1998) · Zbl 0961.74009
[17] Garikipati, K.; Hughes, T. J.R., A variational multiscale approach to strain localization—formulation for multidimensional problems, Comput. Methods Appl. Mech. Engrg., 188, 39-60 (2000) · Zbl 1011.74069
[18] GiD: The personal pre and postprocessor. Available from <http://www.cimne.upc.es; GiD: The personal pre and postprocessor. Available from <http://www.cimne.upc.es
[19] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall Inc.: Prentice-Hall Inc. Englewood Cliffs, NJ · Zbl 0634.73056
[20] Hughes, T. J.R., Multiscale phenomena: Green’s function, Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations, Comput. Methods Appl. Mech. Engrg., 127, 387-401 (1995) · Zbl 0866.76044
[21] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[22] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-square method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[23] Hughes, T. J.R.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 3-24 (1998) · Zbl 1017.65525
[24] Klaas, O.; Maniatty, A.; Shephard, M. S., A stabilized mixed finite element method for finite elasticity. Formulation for linear displacement and pressure interpolation, Comput. Methods Appl. Mech. Engrg., 180, 65-79 (1999) · Zbl 0959.74066
[25] Maniatty, A.; Liu, Y., Stabilized finite element method for viscoplastic flow: formulation with state variable evolution, Int. J. Numer. Methods Engrg., 56, 185-209 (2003) · Zbl 1116.74431
[26] Maniatty, A.; Liu, Y.; Klaas, O.; Shephard, M. S., Stabilized finite element method for viscoplastic flow: formulation and a simple progressive solution strategy, Comput. Methods Appl. Mech. Engrg., 190, 4609-4625 (2001) · Zbl 1059.74056
[27] Maniatty, A.; Liu, Y.; Klaas, O.; Shephard, M. S., Higher order stabilized finite element method for hyperelastic finite deformation, Comput. Methods Appl. Mech. Engrg., 191, 1491-1503 (2002) · Zbl 1098.74704
[28] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. Numer. Methods Engrg., 37, 1981-2004 (1994) · Zbl 0804.73067
[29] E. Oñate, J. Rojek, R.L. Taylor, O.C. Zienkiewicz, Linear triangles and tetrahedra for incompressible problem using a finite calculus formulation, in: Proceedings of European Conference on Computational Mechanics, ECCM 2001, 2001.; E. Oñate, J. Rojek, R.L. Taylor, O.C. Zienkiewicz, Linear triangles and tetrahedra for incompressible problem using a finite calculus formulation, in: Proceedings of European Conference on Computational Mechanics, ECCM 2001, 2001.
[30] Oñate, E.; Rojek, J.; Taylor, R. L.; Zienkiewicz, O. C., Finite calculus formulation for incompressible solids using linear triangles and tetrahedra, Int. J. Numer. Methods Engrg., 59, 1473-1500 (2004) · Zbl 1041.74546
[31] Ramesh, B.; Maniatty, A., Stabilized finite element formulation for elasto-plastic finite deformations, Comput. Methods Appl. Mech. Engrg., 194, 775-800 (2005) · Zbl 1112.74536
[32] Reddy, B. D.; Simo, J. C., Stability and convergence of a class of enhanced assumed strain methods, SIAM J. Numer. Anal., 32, 1705-1728 (1995) · Zbl 0855.73073
[33] Reese, S.; Wriggers, P., A stabilization technique to avoid hourglassing in finite elasticity, Int. J. Numer. Methods Engrg., 48, 79-109 (2000) · Zbl 0983.74070
[34] Reese, S.; Küssner, M.; Reddy, B. D., A new stabilization technique for finite elements in nonlinear elasticity, Int. J. Numer. Methods Engrg., 44, 1617-1652 (1999) · Zbl 0927.74070
[35] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66, 199-219 (1988) · Zbl 0611.73057
[36] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part II. Computational aspects, Comput. Methods Appl. Mech. Engrg., 68, 1-31 (1988) · Zbl 0644.73043
[37] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[38] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformations, Comput. Methods Appl. Mech. Engrg., 110, 359-386 (1993) · Zbl 0846.73068
[39] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer Berlin · Zbl 0934.74003
[40] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73088
[41] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[42] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[43] R.L. Taylor, A mixed formulation for triangular and tetrahedral elements, in: Métodos Numéricos en Ingeniería Conference Proceedings, SEMNI 1999, Barcelona, Spain, 1999.; R.L. Taylor, A mixed formulation for triangular and tetrahedral elements, in: Métodos Numéricos en Ingeniería Conference Proceedings, SEMNI 1999, Barcelona, Spain, 1999.
[44] Q. Valverde, C. Agelet de Saracibar, M. Cervera, M. Chiumenti, Elementos estabilizados de bajo orden en mecánica de sólidos, Monografía M 69, CIMNE, 2002.; Q. Valverde, C. Agelet de Saracibar, M. Cervera, M. Chiumenti, Elementos estabilizados de bajo orden en mecánica de sólidos, Monografía M 69, CIMNE, 2002.
[45] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method, Vol. 1-3 (2000), Butterworth-Heinemann: Butterworth-Heinemann London · Zbl 0991.74002
[46] Zienkiewicz, O. C.; Rojek, J.; Taylor, R. L.; Pastor, M., Triangles and tetrahedra in explicit dynamic codes for solids, Int. J. Numer. Methods Engrg., 43, 565-583 (1998) · Zbl 0939.74073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.