×

New results on stability and stabilization of a class of nonlinear fractional-order systems. (English) Zbl 1283.93138

Summary: The asymptotic stability and stabilization problem of a class of fractional-order nonlinear systems with Caputo derivative are discussed in this paper. By using of Mittag-Leffler function, Laplace transform, and the generalized Gronwall inequality, a new sufficient condition ensuring local asymptotic stability and stabilization of a class of fractional-order nonlinear systems with fractional-order \(\alpha:1<\alpha<2\) is proposed. Then a sufficient condition for the global asymptotic stability and stabilization of such system is presented firstly. Finally, two numerical examples are provided to show the validity and feasibility of the proposed method.

MSC:

93C10 Nonlinear systems in control theory
93D20 Asymptotic stability in control theory
26A33 Fractional derivatives and integrals
93B52 Feedback control
34C28 Complex behavior and chaotic systems of ordinary differential equations

Software:

FODE
Full Text: DOI

References:

[1] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[2] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006) · Zbl 1092.45003
[3] Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/9789812817747
[4] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. Astron. Soc. 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[5] Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339-3352 (2004) · Zbl 1071.81035 · doi:10.1063/1.1769611
[6] Ryabov, Y., Puzenko, A.: Damped oscillation in view of the fractional oscillator equation. Phys. Rev. B 66, 184-201 (2002) · doi:10.1103/PhysRevB.66.184201
[7] Das, S., Gupta, P.: A mathematical model on fractional Lotka-Volterra equations. J. Theor. Biol. 277, 1-6 (2011) · Zbl 1405.92227 · doi:10.1016/j.jtbi.2011.01.034
[8] Burov, S., Barkai, E.: Fractional Langevin equation: overdamped, underdamped, and critical behaviors. Phys. Rev. E 78, 031112 (2008) · doi:10.1103/PhysRevE.78.031112
[9] Matignon, D., Stability results for fractional differential equations with applications, 963-968 (1996) · Zbl 0863.93029
[10] Lu, J.G., Chen, Y.Q.: Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case. IEEE Trans. Autom. Control 55, 152-158 (2010) · Zbl 1368.93506 · doi:10.1109/TAC.2009.2033738
[11] Lu, J.G., Chen, G.R.: Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans. Autom. Control 54, 1294-1299 (2009) · Zbl 1367.93472 · doi:10.1109/TAC.2009.2013056
[12] Tavazoe, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566-1576 (2009) · Zbl 1168.34036 · doi:10.1016/j.matcom.2008.07.003
[13] Ahn, H.S., Chen, Y.Q.: Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44, 2985-2988 (2008) · Zbl 1152.93455 · doi:10.1016/j.automatica.2008.07.003
[14] Deng, W.H., Li, C.P., Lu, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[15] Kheirizad, I., Tavazoei, M.S., Jalali, A.A.: Stability criteria for a class of fractional order systems. Nonlinear Dyn. 61, 153-161 (2010) · Zbl 1204.93106 · doi:10.1007/s11071-009-9638-1
[16] Li, C.P., Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193, 27-47 (2011) · doi:10.1140/epjst/e2011-01379-1
[17] Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[18] Sadati, S.J., Baleanu, D., Ranjbar, D.A., Ghaderi, R., Abdeljawad, T.: Mittag-Leffler stability theorem for fractional nonlinear systems with delay. Abstr. Appl. Anal. 2010, 108651 (2010) · Zbl 1195.34013 · doi:10.1155/2010/108651
[19] Liu, S., Li, X.Y., Jiang, W., Zhou, X.F.: Mittag-Leffler stability of nonlinear fractional neutral singular systems. Commun. Nonlinear Sci. Numer. Simul. 10, 3961-3966 (2012) · Zbl 1263.34012 · doi:10.1016/j.cnsns.2012.02.012
[20] Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433-2439 (2012) · Zbl 1243.93081 · doi:10.1007/s11071-011-0157-5
[21] Wen, X.J., Wu, Z.M., Lu, J.G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II, Express Briefs 55, 1178-1182 (2008) · Zbl 1192.35094 · doi:10.1109/TCSII.2008.2002571
[22] Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal. 72, 1768-1777 (2010) · Zbl 1182.26009 · doi:10.1016/j.na.2009.09.018
[23] Chen, L.P., Chai, Y., Wu, R.C., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II, Express Briefs 59, 602-606 (2012) · doi:10.1109/TCSII.2012.2206936
[24] Zhao, L.D., Hu, J.B., Fang, J.A., Zhang, W.B.: Studying on the stability of fractional-order nonlinear system. Nonlinear Dyn. 70, 475-479 (2012) · Zbl 1267.34013 · doi:10.1007/s11071-012-0469-0
[25] Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855-875 (2011) · Zbl 1228.65190 · doi:10.1016/j.camwa.2011.02.045
[26] De la Sen, M.: About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2011, 867932 (2011) · Zbl 1219.34102 · doi:10.1155/2011/867932
[27] Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[28] Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510-1522 (2007) · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[29] Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: the generalized Lorenz-like system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 1507-1537 (2004) · Zbl 1129.37323 · doi:10.1142/S021812740401014X
[30] Lu, J.G.: Chaotic dynamics of the fractional-order Lu system and its synchronization. Phys. Lett. A 354, 305-311 (2006) · doi:10.1016/j.physleta.2006.01.068
[31] Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003) · doi:10.1103/PhysRevLett.91.034101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.