×

Analysis of stability and Hopf bifurcation of delayed feedback spin stabilization of a rigid spacecraft. (English) Zbl 1279.70008

Summary: The stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated in this paper. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Bifurcation diagrams and the dynamics of the delayed closed-loop system are verified using continuation software and with numerical simulations.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
93B52 Feedback control
70E15 Free motion of a rigid body
70E50 Stability problems in rigid body dynamics
Full Text: DOI

References:

[1] Albu, I., Neamtu, M., Opris, D.: Dissipative mechanical systems with delay. Tensor 67, 1-27 (2006) · Zbl 1132.34056
[2] Albu, I.; Neamtu, M.; Opris, D., The dynamical rigid body with memory, October 5-7, 2007, Bucharest · Zbl 1186.70008
[3] Ramnath, R.V.: Multiple Scales Theory and Aerospace Applications. AIAA, Reston (2010) · doi:10.2514/4.867644
[4] Tao, Y.C., Ramnath, R.V.: Satellite Attitude Prediction by Multiple Time Scales Method. The Charles Stark Draper Laboratory, Cambridge (1975)
[5] Alfriend, K.T.: Magnetic attitude control system for dual-spin satellites. AIAA J. 13(6), 817-822 (1975) · Zbl 0321.70011 · doi:10.2514/3.60443
[6] Gebman, J.R., Mingori, D.L.: Perturbation solution for the flat spin recovery of a dual-spin spacecraft. AIAA J. 14(7), 859-867 (1976) · doi:10.2514/3.61428
[7] Chunodkar, A., Akella, M.: Attitude stabilization with unknown bounded delay in feedback control implementation. J. Guid. Control Dyn. 34(2), 533-542 (2011) · doi:10.2514/1.50352
[8] Samiei, E.; Nazari, M.; Butcher, E.; Schaub, H., Delayed feedback control of rigid body attitude using neural networks and Lyapunov-Krasovskii functionals, Charleston, SC
[9] Nazari, M., Butcher, E., Schaub, H.: Spacecraft Attitude Stabilization using Nonlinear Delayed Multi-Actuator Control and Inverse Dynamics. J. Guid. Control Dyn. (2013). doi:10.2514/1.58249 · doi:10.2514/1.58249
[10] Nayfeh, A.: Method of Normal Forms. Wiley, New York (1993) · Zbl 1220.37002
[11] Bambusi, D.: Galerkin averaging method and Poincaré normal form for some quasilinear PDEs. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4(5), 669-702 (2005) · Zbl 1170.35317
[12] Butcher, E.: Normal forms for high co-dimension bifurcations of nonlinear time-periodic systems with nonsemisimple eigenvalues. Nonlinear Dyn. 30, 29-53 (2002) · Zbl 1045.70014 · doi:10.1023/A:1020340116695
[13] Nayfeh, A.: Order reduction of retarded nonlinear systems—the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483-500 (2008) · Zbl 1170.70355 · doi:10.1007/s11071-007-9237-y
[14] Xu, J., Lu, Q.: Hopf bifurcation in a time-delayed lienard equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 9(5), 939-951 (1999) · Zbl 1089.34545 · doi:10.1142/S0218127499000675
[15] Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Am. Math. Soc. 352(5), 2217-2238 (2000) · Zbl 0955.35008 · doi:10.1090/S0002-9947-00-02280-7
[16] Das, S., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn. 30, 323-335 (2002) · Zbl 1038.34075 · doi:10.1023/A:1021220117746
[17] Kielhöfer, H.: Bifurcation Theory: an Introduction with Applications to Partial Differential Equations. Springer, New York (2004) · Zbl 1032.35001
[18] Doedel, E., Champneys, A.T.F., Kuznetsov, Y., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., Zhang, C.: AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University Montreal, Canada (2007)
[19] Insperger, T., Stépán, G.: Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications. Springer, New York (2011) · Zbl 1245.93004 · doi:10.1007/978-1-4614-0335-7
[20] Bers, L.; John, F.; Schechter, M., Partial differential equations, No. 3A, 1-343 (1964), New York · Zbl 0124.30501
[21] Nayfeh, A.: Problems in Perturbation. Wiley, New York (1985) · Zbl 0573.34001
[22] Schaub, H., Junkins, J.: Analytical Mechanics of Space Systems. AIAA, Reston (2009) · Zbl 1194.70001
[23] Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL v. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations. Department of Computer Science. K.U. Leuven, Technical Report TW-330, Leuven, Belgium (2001)
[24] Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1-21 (2002) · Zbl 1070.65556 · doi:10.1145/513001.513002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.