×

Toward the approximate solution for fractional order nonlinear mixed derivative and nonlocal boundary value problems. (English) Zbl 1422.65296

Summary: The paper is devoted to the study of operational matrix method for approximating solution for nonlinear coupled system fractional differential equations. The main aim of this paper is to approximate solution for the problem under two different types of boundary conditions, \(\hat{m}\)-point nonlocal boundary conditions and mixed derivative boundary conditions. We develop some new operational matrices. These matrices are used along with some previously derived results to convert the problem under consideration into a system of easily solvable matrix equations. The convergence of the developed scheme is studied analytically and is conformed by solving some test problems.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals

Software:

Algorithm 432

References:

[1] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[2] Ma, R., Multiple positive solutions for nonlinear \(m\) -point boundary value problems, Applied Mathematics and Computation, 148, 1, 249-262 (2004) · Zbl 1046.34030 · doi:10.1016/S0096-3003(02)00843-3
[3] Ahmad, B., Approximation of solutions of the forced Duffing equation with \(m\)-point boundary conditions, Communications in Applied Analysis, 13, 1, 11-20 (2009) · Zbl 1182.34011
[4] Lakestani, M.; Dehghan, M.; Irandoust-Pakchin, S., The construction of operational matrix of fractional derivatives using B-spline functions, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1149-1162 (2012) · Zbl 1276.65015 · doi:10.1016/j.cnsns.2011.07.018
[5] Yousefi, S. A.; Behroozifar, M.; Dehghan, M., Numerical solution of the nonlinear age-structured population models by using the operational matrices of Bernstein polynomials, Applied Mathematical Modelling, 36, 3, 945-963 (2012) · Zbl 1243.65127 · doi:10.1016/j.apm.2011.07.041
[6] Eslahchi, M. R.; Dehghan, M., Application of Taylor series in obtaining the orthogonal operational matrix, Computers & Mathematics with Applications, 61, 9, 2596-2604 (2011) · Zbl 1221.33016 · doi:10.1016/j.camwa.2011.03.004
[7] Saadatmandi, A.; Dehghan, M., A tau approach for solution of the space fractional diffusion equation, Computers & Mathematics with Applications, 62, 3, 1135-1142 (2011) · Zbl 1228.65203 · doi:10.1016/j.camwa.2011.04.014
[8] Dehghan, M.; Shakeri, F., A semi-numerical technique for solving the multi-point boundary value problems and engineering applications, International Journal of Numerical Methods for Heat and Fluid Flow, 21, 7, 794-809 (2011) · doi:10.1108/09615531111162783
[9] Kayedi-Bardeh, A.; Eslahchi, M. R.; Dehghan, M., A method for obtaining the operational matrix of fractional Jacobi functions and applications, Journal of Vibration and Control, 20, 5, 736-748 (2014) · Zbl 1372.65221 · doi:10.1177/1077546312467049
[10] Bhrawy, A. H.; Alofi, A. S., A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 62-70 (2012) · Zbl 1244.65099 · doi:10.1016/j.cnsns.2011.04.025
[11] Bhrawy, A. H.; Al-Shomrani, M. M., A shifted Legendre spectral method for fractional-order multi-point boundary value problems, Advances in Difference Equations, 2012, 1, article 8, 1-19 (2012) · Zbl 1280.65074 · doi:10.1186/1687-1847-2012-8
[12] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Computers & Mathematics with Applications, 62, 5, 2364-2373 (2011) · Zbl 1231.65126 · doi:10.1016/j.camwa.2011.07.024
[13] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Computers & Mathematics with Applications. An International Journal, 59, 3, 1326-1336 (2010) · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[14] Saadatmandi, A.; Dehghan, M., The use of sinc-collocation method for solving multi-point boundary value problems, Communications in Nonlinear Science and Numerical Simulation, 17, 2, 593-601 (2012) · Zbl 1244.65114 · doi:10.1016/j.cnsns.2011.06.018
[15] Bellman, R. E.; Kalaba, R. E., Quasilinearization and Non-Linear Boundary Value Problems (1965), New York, NY, USA: Elsevier, New York, NY, USA · Zbl 0139.10702
[16] Stanley, E. L., Quasilinearization and Invariant Imbedding (1968), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0212.17602
[17] Agarwal, R. P.; Chow, Y. M., Iterative methods for a fourth order boundary value problem, Journal of Computational and Applied Mathematics, 10, 2, 203-217 (1984) · Zbl 0541.65055 · doi:10.1016/0377-0427(84)90058-x
[18] Baird, C. A., Modified quasilinearization technique for the solution of boundary-value problems for ordinary differential equations, Journal of Optimization Theory and Applications, 3, 4, 227-242 (1969) · Zbl 0169.20001 · doi:10.1007/bf00926525
[19] Mandelzweig, V. B.; Tabakin, F., Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Computer Physics Communications, 141, 2, 268-281 (2001) · Zbl 0991.65065 · doi:10.1016/s0010-4655(01)00415-5
[20] Khan, R. A.; Khalil, H., A new method based on legendre polynomials for solution of system of fractional order partial differential equations, International Journal of Computer Mathematics, 91, 12, 2554-2567 (2014) · Zbl 1328.65253 · doi:10.1080/00207160.2014.880781
[21] Khalil, H.; Khan, R. A., A new method based on Legendre polynomials for solutions of the fractional two-dimensional heat conduction equation, Computers & Mathematics with Applications, 67, 10, 1938-1953 (2014) · Zbl 1366.74084 · doi:10.1016/j.camwa.2014.03.008
[22] Khalil, H.; Khan, R. A., The use of Jacobi polynomials in the numerical solution of coupled system of fractional differential equations, International Journal of Computer Mathematics, 92, 7, 1452-1472 (2015) · Zbl 1321.65112 · doi:10.1080/00207160.2014.945919
[23] Khalil, H.; Khan, R. A.; Baleanu, D.; Rashidi, M. M., Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains, Computers & Mathematics with Applications (2016) · Zbl 1442.35513 · doi:10.1016/j.camwa.2016.04.014
[24] Khalil, H.; Khan, R. A.; Baleanu, D.; Saker, S. H., Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions, Advances in Difference Equations, 2016, article 177 (2016) · Zbl 1419.34087 · doi:10.1186/s13662-016-0910-7
[25] Khalil, H.; Rashidi, M. M.; Khan, R. A., Application of fractional order legendre polynomials: a new procedure for solution of linear and nonlinear fractional differential equations under m-point nonlocal boundary conditions, Communications in Numerical Analysis, 6, 2, 144-166 (2016)
[26] Bartels, R. H.; Stewart, G. W., Solution of the matrix equation \(A X + X B = C \left``[F 4\right``]\), Communications of the ACM, 15, 9, 820-826 (1972) · Zbl 1372.65121 · doi:10.1145/361573.361582
[27] Saeed, U.; ur Rehman, M., Wavelet-Galerkin quasilinearization method for nonlinear boundary value problems, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.65257 · doi:10.1155/2014/868934
[28] Rehman, M.; Khan, R. A., A numerical method for solving boundary value problems for fractional differential equations, Applied Mathematical Modelling, 36, 3, 894-907 (2012) · Zbl 1243.65095 · doi:10.1016/j.apm.2011.07.045
[29] Li, X.; Wu, B., Approximate analytical solutions of nonlocal fractional boundary value problems, Applied Mathematical Modelling, 39, 5-6, 1717-1724 (2015) · Zbl 1443.65101 · doi:10.1016/j.apm.2014.09.035
[30] Geng, F. Z.; Cui, M. G., A reproducing kernel method for solving nonlocal fractional boundary value problems, Applied Mathematics Letters, 25, 5, 818-823 (2012) · Zbl 1242.65144 · doi:10.1016/j.aml.2011.10.025
[31] Rach, R.; Duan, J.-S.; Wazwaz, A.-M., Solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method, Journal of Mathematical Chemistry, 52, 1, 255-267 (2014) · Zbl 1311.92222 · doi:10.1007/s10910-013-0260-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.