×

Quasilinear equations with a sectorial set of operators at Gerasimov-Caputo derivatives. (English. Russian original) Zbl 1522.35553

Proc. Steklov Inst. Math. 321, Suppl. 1, S78-S89 (2023); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 29, No. 2, 248-259 (2023).
Summary: The issues of unique solvability of the Cauchy problem are studied for a quasilinear equation solved with respect to the highest fractional Gerasimov-Caputo derivative in a Banach space with closed operators from the class \(A_{\alpha,G}^n\) in the linear part and with a nonlinear operator continuous in the graph norm. A theorem on the local existence and uniqueness of a solution to the Cauchy problem is proved in the case of a locally Lipschitz nonlinear operator. Under the nonlocal Lipschitz condition for the nonlinear operator, the existence of a unique solution on a predetermined interval is shown. Abstract results are illustrated by examples of initial-boundary value problems for partial differential equations with Gerasimov-Caputo time derivatives.

MSC:

35R11 Fractional partial differential equations
35G31 Initial-boundary value problems for nonlinear higher-order PDEs
34G20 Nonlinear differential equations in abstract spaces
Full Text: DOI

References:

[1] Uchaikin, VV, The Method of Fractional Derivatives (2008), Ulyanovsk: Artishok, Ulyanovsk
[2] Tarasov, VE, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2011), Berlin: Springer, Berlin
[3] Samko, SG; Kilbas, AA; Marychev, OI, Fractional Integrals and Derivatives: Theory and Applications (1993), New York: Gordon and Breach, New York · Zbl 0818.26003
[4] Prüss, J., Evolutionary Integral Equations and Applications (1993), Basel: Springer, Basel · Zbl 0784.45006 · doi:10.1007/978-3-0348-8570-6
[5] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic, San Diego · Zbl 0924.34008
[6] Pskhu, AV, Equations with Fractional-Order Partial Derivatives (2005), Moscow: Nauka, Moscow · Zbl 1193.35245
[7] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), New York: Elsevier, New York · Zbl 1092.45003
[8] Kostić, M., Abstract Volterra Integro-Differential Equations (2015), Boca Raton: CRC, Boca Raton · Zbl 1318.45004 · doi:10.1201/b18463
[9] Fedorov, VE; Boyko, KV; Fuong, TD, Initial-value problems for some classes of linear evolution equations with several fractional derivatives, Math. Notes NEFU, 28, 3, 85-104 (2021) · Zbl 07821036 · doi:10.25587/SVFU.2021.75.46.006
[10] Boyko, KV; Fedorov, VE, The Cauchy problem for a class of multi-term equations with Gerasimov-Caputo derivatives, Lobachevskii J. Math., 43, 6, 1293-1302 (2022) · Zbl 1511.34068 · doi:10.1134/S1995080222090049
[11] Boyko, KV; Fedorov, VE, An inverse problem for a class of degenerate evolution equations with several Gerasimov-Caputo derivatives, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Tematich. Obzory, 213, 38-46 (2022) · doi:10.36535/0233-6723-2022-213-38-46
[12] Fedorov, VE; Turov, MM, The defect of a Cauchy type problem for linear equations with several Riemann-Liouville derivatives, Sib. Math. J., 62, 5, 925-942 (2021) · Zbl 1512.34106 · doi:10.1134/S0037446621050141
[13] Turov, MM, Quasilinear multi-term equations with Riemann-Liouville derivatives of arbitrary orders, Chelyab. Phys. Math. J., 7, 4, 434-446 (2022) · Zbl 1514.34025 · doi:10.47475/2500-0101-2022-17404
[14] Gerasimov, AN, Generalization of linear laws of deformation and their application to problems of inner friction, Prikl. Mat. Mekh., 12, 3, 251-260 (1948) · Zbl 0032.12901
[15] Caputo, M., Linear model of dissipation whose \[q\] is almost frequency independent. II, Geophys. J. Int., 13, 5, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[16] Novozhenova, OG, Life and science of Alexey Gerasimov, one of the pioneers of fractional calculus in Soviet Union, Frac. Calcul. Appl. Anal., 20, 3, 790-809 (2017) · Zbl 1366.01058 · doi:10.1515/fca-2017-0040
[17] Bajlekova, EG, Fractional Evolution Equations in Banach Spaces (2001), Eindhoven: Eindhoven Univ. Technol., Eindhoven · Zbl 0989.34002
[18] Kato, T., Perturbation Theory for Linear Operators (1966), Berlin: Springer, Berlin · Zbl 0148.12601 · doi:10.1007/978-3-642-53393-8
[19] Plekhanova, MV; Baybulatova, GD, Semilinear equations in Banach spaces with lower fractional derivatives, Springer Proc. Math. Stat., 292, 81-93 (2019) · Zbl 1434.35276 · doi:10.1007/978-3-030-26987-6_6
[20] Hassard, BD; Kazarinoff, ND; Wan, Y-H, Theory and Applications of Hopf Bifurcation (1981), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.