×

Ball-and-finger system: modeling and optimal trajectories. (English) Zbl 1407.70015

Summary: A rigid-body model of a finger interacting with a trackball is considered. The proposed system is a suitable candidate for studying trajectory generation when interaction plays an important role, such as in assembly and manipulation tasks. The mathematical model consists of a ball with a spherical joint constraint, a finger with three degrees of freedom, and the Coulomb friction model. From first principles, we derive a hybrid, high-index differential-algebraic equation for modeling the system dynamics, which is used for both simulation and finding optimal trajectories. For this problem, task planning, path planning, and trajectory generation are strongly interrelated, which makes using an integrated approach to trajectory generation inevitable. Moreover, the trajectory generation algorithm has to handle a number of important features, e.g., unilateral and non-holonomic constraints.

MSC:

70E60 Robot dynamics and control of rigid bodies
70F35 Collision of rigid or pseudo-rigid bodies
70F25 Nonholonomic systems related to the dynamics of a system of particles

References:

[1] Baumrucker, B.T., Biegler, L.T.: MPEC strategies for optimization of a class of hybrid dynamic systems. J. Process Control 19(8), 1248-1256 (2009) · doi:10.1016/j.jprocont.2009.02.006
[2] Becerra, V.: PSOPT optimal control solver user manual (release 3) (2010). Available at: http://code.google.com/p/psopt/downloads/list
[3] Becerra, V. M., Solving complex optimal control problems at no cost with PSOPT, Yokohama, Japan, Sep. 7-10
[4] Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4-5), 597-634 (2009) · Zbl 1179.90237 · doi:10.1080/10556780903087124
[5] Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009) · Zbl 1221.90001 · doi:10.1515/9781400831050
[6] Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM, Philadelphia (2010) · Zbl 1189.49001 · doi:10.1137/1.9780898718577
[7] Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003) · Zbl 1045.70001 · doi:10.1007/b97376
[8] Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 3rd edn. Springer, Berlin (2012) · Zbl 0861.73001
[9] Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in Matlab. Springer, Berlin (2011) · Zbl 1233.68001 · doi:10.1007/978-3-642-20144-8
[10] Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215-221 (1955) · Zbl 0064.15603
[11] Dymola: Multi-Engineering Modeling and Simulation—Dymola—CATIA (2016). http://www.dymola.com
[12] Felis, M. L.; Mombaur, K., Synthesis of full-body 3-D human gait using optimal control methods, Stockholm, Sweden
[13] Fouquet, M.; Guéguen, H.; Faille, D.; Dumur, D., Hybrid dynamic optimization of power plants using sum-up rounding and adaptive mesh refinement, Antibes, France
[14] Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3, 2nd edn. Wiley/IEEE Press, Piscataway (2015)
[15] Ojer de Andrés, M., Mahdi Ghazaei Ardakani, M., Robertsson, A.: Reinforcement Learning for 4-Finger-Gripper Manipulation. Accepted for publication in Proc. IEEE Int. Conf. Rob. Aut. (ICRA), Brisbane, Australia (2018)
[16] Goyal, S.: Planar sliding of a rigid body with dry friction: limit surfaces and dynamics of motion. Ph.D. Thesis, Cornell University (1989)
[17] Hardt, M., von Stryk, O.: Dynamic modeling in the simulation, optimization, and control of bipedal and quadrupedal robots. Z. Angew. Math. Mech. 83(10), 648-662 (2003) · Zbl 1063.70006 · doi:10.1002/zamm.200310068
[18] HSL: A collection of Fortran codes for large scale scientific computation (2016). Software available at: http://www.hsl.rl.ac.uk
[19] Kirches, C., Lenders, F.: Approximation properties and tight bounds for constrained mixed-integer optimal control. Math. Program. (2016, submitted for publication). Preprint available at Optimization Online; April, 2016 · Zbl 1443.49033
[20] Kumar, V.; Tassa, Y.; Erez, T.; Todorov, E., Real-time behaviour synthesis for dynamic hand-manipulation, Hong Kong, China
[21] Kumar, V.; Todorov, E.; Levine, S., Optimal control with learned local models: application to dexterous manipulation, Stockholm, Sweden
[22] Lin, H., Antsaklis, P.J.: Hybrid dynamical systems: an introduction to control and verification. Found. Trends Syst. Control 1(1), 1-172 (2014) · doi:10.1561/2600000001
[23] Mattsson, S. E.; Olsson, H.; Elmqvist, H., Dynamic selection of states in Dymola, Lund, Sweden
[24] Mattsson, S. E.; Otter, M.; Elmqvist, H., Multi-mode DAE systems with varying index, Paris, France
[25] Menon, A., Mehrotra, K., Mohan, C.K., Ranka, S.: Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw. 9(5), 819-835 (1996) · doi:10.1016/0893-6080(95)00107-7
[26] Meriam, J.L., Kraige, L.G.: Engineering Mechanics: Dynamics, vol. 2, 7th edn. Wiley, New Jersey (2012) · Zbl 0818.70002
[27] Mordatch, I.; Lowrey, K.; Todorov, E., Ensemble-CIO: full-body dynamic motion planning that transfers to physical humanoids, Hamburg, Germany
[28] Newton, I.: Mathematical Principles of Natural Philosophy. University of California Press, Berkeley and Los Angeles (1966). The original work 1687, English translation by A. Motte, 1729, translation revised by F. Cajori · Zbl 0127.00501
[29] Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006) · Zbl 1104.65059
[30] Rombokas, E., Malhotra, M., Theodorou, E.A., Todorov, E., Matsuoka, Y.: Reinforcement learning and synergistic control of the ACT hand. IEEE/ASME Trans. Mechatron. 18(2), 569-577 (2013) · doi:10.1109/TMECH.2012.2219880
[31] Shi, W., Stapersma, D., Grimmelius, H.T.: Comparison study on moving and transportation performance of transportation modes. Int. J. Energy Environ. 2(4), 106-120 (2008)
[32] Tassa, Y.; Erez, T.; Todorov, E., Synthesis and stabilization of complex behaviors through online trajectory optimization, Vilamoura, Portugal
[33] Thieriot, H.; Nemura, M.; Torabzadeh-Tari, M.; Fritzson, P.; Singh, R.; Kocherry, J. J., Towards design optimization with OpenModelica emphasizing parameter optimization with genetic algorithms, Dresden, Germany
[34] Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 25-57 (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[35] Yamada, T.; Yamada, M.; Yamamoto, H., Stability analysis of multiple objects grasped by multifingered hands with revolute joints in 2D, Chengdu, China
[36] Yamada, T.; Yamamoto, H., Grasp stability analysis of multiple objects including contact surface geometry in 3D, Takamatsu, Japan
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.