×

A quick position control strategy based on optimization algorithm for a class of first-order nonholonomic system. (English) Zbl 1448.93235

Summary: In this paper, we develop a quick and effective position control strategy based on the differential evolution (DE) algorithm for a planar three-link passive-active-active (PAA) underactuated system with first-order nonholonomic constraint. Due to the existence of the constraint, when the angular velocities of the two active links are proportional, the planar PAA system is transformed from a first-order nonholonomic system to a holonomic system like an Acrobot. Making full use of the angular constraint of the like-Acrobot, we employ the DE algorithm to calculate the target angles of all links and the target ratio between the angular velocities of the two active links. After that, one continuous controller for one active link is designed to ensure the target ratio in the whole control process; meantime, the other continuous controller for the other active link is designed to make its angle asymptotically converge to the corresponding target value. In this way, the angles of all links can asymptotically converge to the corresponding target values according to the angular constraint, and thus the position control of the system is realized using the continuous control method. Finally, the simulation results demonstrate the quickness and effectiveness of our proposed control method.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Arai, H.; Tanie, K.; Shiroma, N., Nonholonomic control of a three-DOF planar underactuated manipulator, IEEE Trans. Robot. Autom., 14, 5, 681-695 (1998)
[2] Bresciani, T., Modelling, identification and control of a quadrotor helicopter, M.Sc. thesis (2008), Lund University: Lund University Sweden
[3] Chen, M.; Jiang, B., Adaptive control and constrained control allocation for overactuated ocean surface vessels, Int. J. Syst. Sci., 4, 12, 2295-2309 (2013) · Zbl 1307.93195
[4] Chen, C. Y.; Li, T. H.S.; Yeh, Y. C., EP-Based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots, Inf. Sci. (Ny), 179, 1, 180-195 (2009) · Zbl 1158.93356
[5] Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G. A.; Burgard, W.; Kavraki, L. E.; Thrun, S., Nonholonomic and Underactuated Systems (2005), MIT Press
[6] Clamroch, N. H.; Reyhanoglu, M.; Schaft, A., Dynamics and control of a class of underactuated mechanical systems, IEEE Trans. Autom. Control, 44, 9, 1663-1671 (1999) · Zbl 0958.93078
[7] Do, K. D.; Pan, J., Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems (2009), Springer Science Business Media
[8] Dong, W.; Huo, W.; Tso, S. K.; Xu, W. L., Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots, IEEE Trans. Robot. Autom., 16, 6, 870-874 (2000)
[9] He, G. P.; Wang, Z. L.; Zhang, J.; Geng, Z. Y., Characteristics analysis and stabilization of a planar 2r underactuated manipulator, Robotica, 34, 584-600 (2016)
[10] Khalil, H. K., Noninear Systems (2002), Englewood Cliffs: Englewood Cliffs Prentice Hall
[11] Lai, X. Z.; Wang, Y. W.; Cao, J. Q.; Wu, M., A simple and quick control strategy for a class of first-order nonholonomic manipulator, Nonlinear Dyn., 85, 4, 2261-2276 (2016) · Zbl 1349.70028
[12] Lai, X. Z.; She, J. H.; Cao, W. H.; Yang, S. X., Stabilization of underactuated planar acrobot based on motion-state constraints, Int. J. Non-Linear Mech., 77, 342-347 (2015)
[13] Lai, X. Z.; Wang, Y. W.; Wu, M., Stable control strategy for planar three-link underactuated mechanical system, IEEE/ASME Trans. Mechatron., 21, 3, 1345-1356 (2016)
[14] Lozano, R.; Fantoni, I., Non-linear Control for Underactuated Mechanical Systems (2002), Springer
[15] Luca, A. D.; Iannitti, S.; Mattone, R.; Oriolo, G., Control problems in underactuated manipulators, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 855-861 (2001)
[16] Luca, A. D.; Mattone, R.; Oriolo, G., Dynamic mobility of redundant robots using end-effector commands, Proceedings of IEEE International Conference on Robotics and Automation, 1760-1767 (1996)
[17] Luca, A. D.; Mattone, R.; Oriolo, G., Stabilization of an underactuated planar 2r manipulator, Int. J. Robust Nonlinear Control, 10, 4, 181-198 (2000) · Zbl 0945.93584
[18] Mahindrakar, A. D.; Rao, S.; Banavar, R. N., Point-to-point control of a 2r planar horizontal underactuated manipulator, Mech. Mach. Theory, 41, 7, 838-844 (2006) · Zbl 1101.70008
[19] Oriolo, G.; Nakamur, Y., Control of mechanical systems with second-order nonholonomic constraints: underactuated manipulators, Proceedings of Thirtieth IEEE Conference on Decision and Control, 2398-2403 (1991)
[20] Oriolo, G.; Vendittelli, M., A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism, IEEE Trans. Rob., 21, 2, 162-175 (2005)
[21] Price, K.; Storn, R. M.; Lampinen, J. A., Differential Evolution: A Practical Approach to Global Optimization (2006), Springer Science and Business Media
[23] Reyhanoglu, M.; Mahindrakar, A. D.; Banavar, R. N., Controllability and point-to-point control of 3-DOF planar horizontal underactuated manipulators, Int. J. Control, 78, 1-13 (2005) · Zbl 1076.93032
[24] Sarabakha, A.; Imanberdiyev, N.; Kayacan, E.; Khanesar, M. A.; Hagras, H., Novel Levenberg-Marquardt based learning algorithm for unmanned aerial vehicles, Inf. Sci. (Ny), 417, 361-380 (2017) · Zbl 1447.93196
[25] She, J. H.; Zhang, A. C.; Lai, X. Z.; Wu, M., Global stabilization of 2-DOF underactuated mechanical systems an equivalent-input-disturbance approach, Nonlinear Dyn., 69, 1-2, 495-509 (2012)
[26] Sidi, M. J., Spacecraft Dynamics and Control: A Practical Engineering Approach (vol. 7) (1997), Cambridge University Press
[27] Storn, R.; Price, K., Differential evolution a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359 (1997) · Zbl 0888.90135
[28] Wang, Y. W.; Lai, X. Z.; Chen, L. F.; Ding, H. F.; Wu, M., A quick control strategy based on hybrid intelligent optimization algorithm for planar n-link underactuated manipulators, Inf. Sci. (Ny), 420, 148-158 (2017)
[29] Yen, H. M.; Li, T. S.; Chang, Y. C., Design of a robust neural network-based tracking controller for a class of electrically driven nonholonomic mechanical systems, Inf. Sci. (Ny), 222, 559-575 (2013) · Zbl 1293.93558
[30] Zhao, Y.; Wang, C. X.; Yu, J. B., Partial-state feedback stabilization for a class of generalized nonholonomic systems with ISS dynamic uncertainties, Int. J. Control Autom. Syst., 16, 1, 79-86 (2018)
[31] Zheng, Z. W.; Wei, H., Planar path following control for stratospheric airship, IET Control Theory Appl., 7, 2, 185-201 (2013)
[32] Zou, A. M.; Kumar, K. D.; de Ruiter, A. H., Spacecraft attitude control using two control torques, Inf. Sci. (Ny), 408, 23-40 (2017) · Zbl 1443.93093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.