×

Poisson geometry in constrained systems. (English) Zbl 1076.53103

Summary: Associated to a constrained system with closed constraint algebra there are two Poisson manifolds \(P\) and \(Q\) forming a symplectic dual pair with respect to the original, unconstrained phase space: \(P\) is the image of the constraint map (equipped with the algebra of constraints) and \(Q\) the Poisson quotient with respect to the orbits generated by the constraints (the orbit space is assumed to be a manifold). We provide sufficient conditions so that the reduced phase space of the constrained system may be identified with a symplectic leaf of \(Q\). By these methods, a second class constrained system with closed algebra is reformulated as an abelian first class system in an extended phase space. While any Poisson manifold (\(P,\Phi\)) has a symplectic realization [M. Karasev, Math. USSR, Izv. 28, 497–527 (1987); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50, No. 3, 508–538 (1986; Zbl 0624.58007) and A. Weinstein, Bull. Am. Math. Soc., New Ser. 16, 101–104 (1987; Zbl 0618.58020)], it does not always permit a leafwise symplectic embedding into a symplectic manifold (\(M,\omega\)). For regular \(P\), it is seen that such an embedding exists, iff the characteristic form-class of \(\Phi\), a certain element of the third relative cohomology of \(P\), vanishes. A tubular neighborhood of the constraint surface of a general second class constrained system equipped with the Dirac bracket provides a physical example for such an embedding into the original symplectic manifold. In contrast, a leafwise symplectic embedding of e.g. (the maximal regular part of) a Poisson Lie manifold associated to a compact, semisimple Lie algebra does not exist.

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
70H45 Constrained dynamics, Dirac’s theory of constraints

References:

[1] Dirac P. A. M., Lectures on Quantum Mechanics (1967) · Zbl 1156.01359
[2] da Silva A. Cannas, Geometric models for noncommutative algebras (1999) · Zbl 1135.58300
[3] DOI: 10.1063/1.529446 · Zbl 0749.58023 · doi:10.1063/1.529446
[4] Schomerus V., JHEP 9906 pp 030–
[5] DOI: 10.1016/S0550-3213(00)00363-1 · Zbl 0984.81167 · doi:10.1016/S0550-3213(00)00363-1
[6] DOI: 10.1063/1.523104 · doi:10.1063/1.523104
[7] DOI: 10.1063/1.1330730 · Zbl 1014.81046 · doi:10.1063/1.1330730
[8] DOI: 10.1016/0550-3213(87)90007-1 · doi:10.1016/0550-3213(87)90007-1
[9] DOI: 10.1142/S0217751X91001581 · Zbl 0741.58050 · doi:10.1142/S0217751X91001581
[10] DOI: 10.1023/A:1012387916161 · Zbl 1040.81046 · doi:10.1023/A:1012387916161
[11] DOI: 10.1007/PL00005559 · Zbl 1024.53055 · doi:10.1007/PL00005559
[12] Weinstein A., J. Differential Geom. 18 pp 523– · Zbl 0524.58011 · doi:10.4310/jdg/1214437787
[13] DOI: 10.1007/978-3-0348-8495-2 · doi:10.1007/978-3-0348-8495-2
[14] Bertlmann R. A., Anomalies in Quantum Field Theory (1996) · Zbl 1223.81003
[15] DOI: 10.1016/S0370-1573(00)00049-1 · Zbl 1097.81571 · doi:10.1016/S0370-1573(00)00049-1
[16] DOI: 10.1070/IM1987v028n03ABEH000895 · Zbl 0624.58007 · doi:10.1070/IM1987v028n03ABEH000895
[17] DOI: 10.1090/S0273-0979-1987-15473-5 · Zbl 0618.58020 · doi:10.1090/S0273-0979-1987-15473-5
[18] DOI: 10.1090/S0002-9939-1982-0633290-X · doi:10.1090/S0002-9939-1982-0633290-X
[19] Guillemin V., Symplectic Techniques in Physics (1984) · Zbl 0576.58012
[20] DOI: 10.1016/0370-2693(86)90604-0 · doi:10.1016/0370-2693(86)90604-0
[21] Bojowald M., JHEP 0307 pp 002–
[22] DOI: 10.1142/S0217732394002951 · Zbl 1015.81574 · doi:10.1142/S0217732394002951
[23] DOI: 10.1006/aphy.1994.1104 · Zbl 0807.53070 · doi:10.1006/aphy.1994.1104
[24] DOI: 10.1007/978-1-4757-1960-4 · doi:10.1007/978-1-4757-1960-4
[25] DOI: 10.1090/S0002-9947-1990-0998124-1 · doi:10.1090/S0002-9947-1990-0998124-1
[26] Liu Z. J., J. Differential Geom. 45 pp 547– · Zbl 0885.58030 · doi:10.4310/jdg/1214459842
[27] DOI: 10.1007/978-3-7091-6234-7 · doi:10.1007/978-3-7091-6234-7
[28] DOI: 10.2969/jmsj/04040705 · Zbl 0642.58025 · doi:10.2969/jmsj/04040705
[29] DOI: 10.1007/978-94-009-3807-6 · doi:10.1007/978-94-009-3807-6
[30] Bott R., Graduate Texts in Mathematics 82, in: Differential Forms in Algebraic Topology (1991)
[31] DOI: 10.1016/0550-3213(78)90175-X · doi:10.1016/0550-3213(78)90175-X
[32] Henneaux M., Quantization of Gauge Systems (1992) · Zbl 0838.53053
[33] DOI: 10.1142/S0217751X01005316 · Zbl 1018.81051 · doi:10.1142/S0217751X01005316
[34] DOI: 10.1016/S0393-0440(02)00027-X · Zbl 1027.70023 · doi:10.1016/S0393-0440(02)00027-X
[35] DOI: 10.1143/PTPS.144.145 · doi:10.1143/PTPS.144.145
[36] DOI: 10.1007/978-0-387-21792-5 · doi:10.1007/978-0-387-21792-5
[37] Karasev M. V., Translations of Mathematical Monographs 119, in: Nonlinear Poisson Brackets: Geometry and Quantization (1993)
[38] Dazord D., J. Differential Geom. 26 pp 223– · Zbl 0634.58003 · doi:10.4310/jdg/1214441368
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.