×

Nonlinear nonholonomic systems: a simple approach and various examples. (English) Zbl 1542.70010

Summary: The main theme of the article is the study of discrete systems of material points subjected to constraints not only of a geometric type (holonomic constraints) but also of a kinematical type (anolonomic constraints). The setting up of the equations of motion follows a simple principle which generalizes the holonomic case. Furthermore, attention is paid to the fact that the kinematical variables retain their velocity meaning, without resorting to the pseudo-velocity technique. Particular situations are examined in which the modeling of the constraints can be carried out in several ways to evaluate their effective equivalence. Numerous examples, many of which taken from the most recurring ones in the literature, are provided in order to illustrate the proposed theory.

MSC:

70F25 Nonholonomic systems related to the dynamics of a system of particles
70H03 Lagrange’s equations

References:

[1] Appell P (1899) Les mouvements de roulement en dynamique. Paris Scientia Phys Math 4 · JFM 30.0642.01
[2] Appell, P., Exemple de mouvement d’un point assujetti à une liason exprimée par une relation non linéaire entre les composantes de la vitesse, Rend Circ Mat Palermo, 32, 48-50, 1911 · JFM 42.0756.01
[3] Benenti, S., Geometrical aspects of the dynamics of non-holonomic systems, Rend Semin Matem Univ Polit Torino, 54, 3, 203-212, 1996 · Zbl 0911.70011
[4] Benenti, S., A general method for writing the dynamical equations of nonholonomic systems with ideal constraints, Regular Chaotic Dyn, 13, 4, 283-315, 2008 · Zbl 1229.70037
[5] Benenti, S., The non-holonomic double pendulum, an example of non-linear non-holonomic system, Regular Chaotic Dyn, 1, 5, 417-442, 2011 · Zbl 1309.37055
[6] Bloch, AM; Krishnaprasad, PS; Mardsen, JE; Murray, R., Nonholonomic mechanical systems with symmetry, Arch Ration Mech Anal, 136, 21-99, 1996 · Zbl 0886.70014
[7] Bloch, AM; Mardsen, JE; Zenkov, DV, Quasivelocities and symmetries in non-holonomic systems, Dyn Syst, 24, 187-222, 2009 · Zbl 1231.37034
[8] Bloch, AM, Nonholonomic mechanics and control, interdisciplinary applied mathematics 24, 2015, New York: Springer, New York · Zbl 1381.70004
[9] Borisov, AV; Mamaev, IS, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Regular Chaotic Dyn, 13, 443-490, 2008 · Zbl 1229.70038
[10] Cantrijn, F.; de Leon, M.; Marrero, JC; de Diego, DM, Reduction of nonholonomic mechanical systems with symmetries, Rep Math Phys, 42, 25-45, 1997 · Zbl 0973.37505
[11] Čaplygin, SA, On the motion of a heavy figure of revolution on a horizontal plane, Trudy Otd Fiz Nauk Obsš č Ljubitel Estest, 9, 1, 10-16, 1897
[12] Četaev NG (1962) On the Gauss principles, papers on analytical mechanics, vol 323. Science Academy
[13] Cortés Monforte, J., Geometric, control and numerical aspects of nonholonomic systems, lecture notes in mathematics, 2002, Berlin: Springer, Berlin · Zbl 1009.70001
[14] Cronström C (2010) On the compatibility of nonholonomic systems and related variational systems. Acta Physica Universitatis Comenianae L-LI(1 & 2): 25-36
[15] Cariñena, JF; Rañada, MF, Lagrangian systems with constraints: a geometric approach to the method of Lagrange multipliers, J Phys A Math Gen, 26, 1335-1351, 1993 · Zbl 0772.58016
[16] Cushman R, Hans Duistermaat H, S̀niatycki J (2009) Geometry of nonholonomically constrained systems advanced series in nonlinear dynamics 26
[17] de León, M.; de Diego, DM, On the geometry of non-holonomic Lagrangian systems. Mechanical systems with nonlinear constraints, J Math Phys, 37, 3389-3414, 1996 · Zbl 0869.70008
[18] de León, M.; Marrero, JC; de Diego, DM, Mechanical systems with nonlinear constraints, Int J Theor Phys, 36, 979-995, 1997 · Zbl 0874.70012
[19] de León, M., A historical review on nonholomic mechanics, RACSAM, 106, 191-224, 2012 · Zbl 1264.37017
[20] Fassò, F.; Sansonetto, N., Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular Chaotic Dyn, 20, 4, 449-462, 2015 · Zbl 1353.70033
[21] Fernandez, OE; Mestdag, T.; Bloch, AM, A generalization of Čhaplygin’s reducibility theorem, Regular Chaotic Dyn, 14, 6, 635-655, 2009 · Zbl 1229.37087
[22] Flannery, MR, The enigma of nonholonomic constraints, Am J Phys, 73, 265, 2005 · Zbl 1219.70039
[23] Gantmacher, FR, Lectures in analytical mechanics, 1970, Moskow: Mir Publisher, Moskow · Zbl 0212.56701
[24] Gorni, G.; Zampieri, G., Time reversibility and energy conservation for Lagrangian systems with nonlinear nonholonomic constraints, Rep Math Phys, 45, 217-227, 2000 · Zbl 0994.70011
[25] Hamel G (1904) Die Lagrange-Eulersche Gleichungen der Mechanik. Z Math Phys 50:1-57, Fortschritte 34:757 · JFM 35.0748.08
[26] Ibort, A.; de León, M.; Marmo, G.; de Diego, DM, Non-holonomic constrained systems as implicit differential equations. Geometrical structures for physical theories, I (Vietri), Rend Sem Mat Univ Politec Torino, 54, 295-317, 1996 · Zbl 0928.70031
[27] Iglesias-Ponte, D.; de Léon, M.; de Diego, DM, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, J Phys A Math Theor, 41, 1, 015205, 2008 · Zbl 1154.70007
[28] Kobayashi, MH; Oliva, WM, A note on the conservation of energy and volume in the setting of nonholonomic mechanical systems, Qual Theory Dyn Syst, 4, 383-411, 2004 · Zbl 1081.70009
[29] Kupka, I.; Oliva, WM, The non-holonomic mechanics, J Differ Equ, 169, 1, 169-189, 2001 · Zbl 0996.70013
[30] Krupkovà, O., Mechanical systems with nonholonomic constraints, J Math Phys, 38, 5098-5126, 1997 · Zbl 0926.70018
[31] Li, SM; Berakadar, J., A generalization of the Chetaev condition for nonlinear nonholonomic constraints: the velocity-determined virtual displacement approach, Rep Math Phys, 63, 2, 179-189, 2009 · Zbl 1169.70007
[32] Lurie, AI, Analytical mechanics, 2002, Berlin: Springer, Berlin · Zbl 1015.70001
[33] Marle, CM, Various approaches to conservative and nonconservative nonholonomic systems, Rep Math Phys, 42, 1-2, 211-229, 1998 · Zbl 0931.37023
[34] Marle, CM, Reduction of constrained mechanical systems and stability of relative equilibria, Commun Math Phys, 174, 295-318, 1995 · Zbl 0859.70012
[35] Marle, CM, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, Banach Center Publ, 59, 1, 223-242, 2003 · Zbl 1043.37047
[36] Massa, E.; Pagani, E., Classical dynamics of non-holonomic systems: a geometric approach, Ann Inst Henri Poincaré, 55, 1, 511-544, 1991 · Zbl 0731.70012
[37] Neǐmark JuI, Fufaev NA (1972) Dynamics of nonholonomic systems. American Mathematical Society, Providence. Translations of Mathematical Monographs 33 · Zbl 0245.70011
[38] Papastravidis, JG, Time-integral variational principles for nonlinear nonholonomic systems, J Appl Math, 64, 985-991, 1997 · Zbl 0916.70012
[39] Papastavridis, JG, Analytical mechanics: a comprehensive treatise on the dynamics of constrained systems, 2014, Singapore: World Scientific, Singapore · Zbl 1292.70002
[40] Pars, LA, A treatise on analytical dynamics, 1965, London: Heinemann Educational Books Ltd, London · Zbl 0125.12004
[41] Routh, EG, The advanced part of a treatise on the dynamics of a system of rigid bodies: Part II of a treatise on the whole subject, 1955, New York: Dover, New York · Zbl 0065.16802
[42] Rumyantsev, VV, Forms of Hamilton’s principle for nonholonomic systems, Mech Autom Robot., 2, 10, 1035-1048, 2000 · Zbl 1009.70018
[43] Rumyantsev, VV, On the Chetaev principle (in Russian), Dokl Akad Nauk SSSR, 210, 4, 787-790, 1973
[44] Salehani, MK, A jet bundle approach to the variational structure of nonholonomic mechanical systems, Rep Math Phys, 83, 3, 373-385, 2019 · Zbl 1441.53081
[45] Śniatycki J (1998) Nonholonomic Noether theorem and reduction of symmetries. Rep Math Phys 42(1-2):5-23 · Zbl 0947.70013
[46] Swaczyna, M., Several examples of nonholonomic mechanical systems, Commun Math, 19, 27-56, 2011 · Zbl 1323.70075
[47] Talamucci, F., Rheonomic systems with nonlinear nonholonomic constraints: the Voronec equations, Regular Chaotic Dyn, 25, 6, 662-673, 2020 · Zbl 1475.70012
[48] Terra, G.; Kobayashi, MH, On classical mechanical systems with non-linear constraints, J Geom Phys, 49, 385-417, 2004 · Zbl 1159.70353
[49] Vagner VV (1941) Geometric interpretation of the motion of nonholonomic systems. Trudy Sem Vektor Tenzor Anal 5:301-327 (Russian) · Zbl 0063.07917
[50] Van Dooren, R., The generalized Hamilton-Jacobi method for non-holonomic dynamical systems of Četaev type, Z Angew Math Mech, 55, 407-411, 1975 · Zbl 0438.70016
[51] Virga, E., Un’osservazione sui vincoli anolonomi non perfetti, Riv Mat Univ Parma, 13, 379-384, 1987 · Zbl 0672.70018
[52] Voronec, PV, On the equations of motion of a heavy rigid body rolling without sliding on a horizontal plane, Kiev Univ Izv, 11, 1-17, 1901
[53] Vranceanu, G., Studio geometrico dei sistemi anolonomi, Ann Mat Pura Appl, 4, 6, 9-43, 1929 · JFM 55.1031.01
[54] Weber, RW, Hamiltonian systems with constraints and their meaning in mechanics, Arch Ration Mech Anal, 91, 309-335, 1986 · Zbl 0606.58024
[55] Zampieri, G., Nonholonomic versus vakonomic mechanics, J Differ Equ, 163, 335-347, 2000 · Zbl 0962.70021
[56] Zeković, DN, Dynamics of mechanical systems with nonlinear nonholonomic constraints—I The history of solving the problem of a material realization of a nonlinear nonholonomic constraint, Z Angew Math Mech, 91, 11, 883-898, 2011 · Zbl 1280.70009
[57] Zeković, DN, Dynamics of mechanical systems with nonlinear nonholonomic constraints—II Differential equations of motion, Z Angew Math Mech, 91, 11, 899-922, 2011 · Zbl 1280.70010
[58] Zeković, DN, Dynamics of mechanical systems with nonlinear nonholonomic constraints—III Analysis of motion, Z Angew Math Mech, 93, 8, 550-574, 2011 · Zbl 1309.70027
[59] Zeković, DN, Examples of nonlinear nonholonomic constraints in classical mechanics (in Russian), Vesnik Moskow Univ Ser 1 Mat Mekh, 1, 100-103, 1991 · Zbl 0722.70013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.