×

Cofibrant models of diagrams: mixed Hodge structures in rational homotopy. (English) Zbl 1349.18030

Summary: We study the homotopy theory of a certain type of diagram category whose vertices are in variable categories with a functorial path, leading to a good calculation of the homotopy category in terms of cofibrant objects. The theory is applied to the category of mixed Hodge diagrams of differential graded algebras. Using Sullivan’s minimal models, we prove a multiplicative version of Beilinson’s Theorem on mixed Hodge complexes. As a consequence, we obtain functoriality for the mixed Hodge structures on the rational homotopy type of complex algebraic varieties. In this context, the mixed Hodge structures on homotopy groups obtained by Morgan’s theory follow from the derived functor of the indecomposables of mixed Hodge diagrams.

MSC:

18G55 Nonabelian homotopical algebra (MSC2010)
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
55P62 Rational homotopy theory
55U35 Abstract and axiomatic homotopy theory in algebraic topology

References:

[1] Baues, Hans J., Obstruction theory on homotopy classification of maps, Lecture Notes in Mathematics, Vol. 628, xi+387 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0361.55017
[2] Baues, Hans Joachim, Algebraic homotopy, Cambridge Studies in Advanced Mathematics 15, xx+466 pp. (1989), Cambridge University Press, Cambridge · Zbl 0688.55001 · doi:10.1017/CBO9780511662522
[3] Be{\u \i }linson, A. A., Notes on absolute Hodge cohomology. Applications of algebraic \(K\)-theory to algebraic geometry and number theory, Part I, II, Boulder, Colo., 1983, Contemp. Math. 55, 35-68 (1986), Amer. Math. Soc., Providence, RI · Zbl 0621.14011 · doi:10.1090/conm/055.1/862628
[4] Bousfield, A. K.; Gugenheim, V. K. A. M., On \({\rm PL}\) de Rham theory and rational homotopy type, Mem. Amer. Math. Soc., 8, 179, ix+94 pp. (1976) · Zbl 0338.55008
[5] Brown, Kenneth S., Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc., 186, 419-458 (1973) · Zbl 0245.55007
[6] [CG1] J. Cirici and F. Guill\'en, \(E_1\)-formality of complex algebraic varieties, Algebr. Geom. Topol., to appear. · Zbl 1301.32019
[7] [CG2] \bysame, Homotopy theory of mixed Hodge complexes, Preprint, arXiv:math/1304.6236 [math.AG] (2013).
[8] Cisinski, Denis-Charles, Cat\'egories d\'erivables, Bull. Soc. Math. France, 138, 3, 317-393 (2010) · Zbl 1203.18013
[9] Deligne, Pierre, Th\'eorie de Hodge. II, Inst. Hautes \'Etudes Sci. Publ. Math., 40, 5-57 (1971) · Zbl 0219.14007
[10] [DeHIII] Pierre Deligne, Th\'eorie de Hodge. III, Inst. Hautes \'Etudes Sci. Publ. Math. (1974), no. 44, 5-77. · Zbl 0237.14003
[11] Deligne, Pierre; Griffiths, Phillip; Morgan, John; Sullivan, Dennis, Real homotopy theory of K\"ahler manifolds, Invent. Math., 29, 3, 245-274 (1975) · Zbl 0312.55011
[12] Dwyer, W. G.; Spali{\'n}ski, J., Homotopy theories and model categories. Handbook of algebraic topology, 73-126 (1995), North-Holland, Amsterdam · Zbl 0869.55018 · doi:10.1016/B978-044481779-2/50003-1
[13] F{\'e}lix, Yves; Halperin, Stephen; Thomas, Jean-Claude, Rational homotopy theory, Graduate Texts in Mathematics 205, xxxiv+535 pp. (2001), Springer-Verlag, New York · Zbl 0961.55002 · doi:10.1007/978-1-4613-0105-9
[14] Griffiths, Phillip; Morgan, John, Rational homotopy theory and differential forms, Progress in Mathematics 16, xii+224 pp. (2013), Springer, New York · Zbl 1281.55002 · doi:10.1007/978-1-4614-8468-4
[15] Guill{\'e}n, Francisco; Navarro Aznar, Vicente, Un crit\`“ere d”extension des foncteurs d\'efinis sur les sch\'emas lisses, Publ. Math. Inst. Hautes \'Etudes Sci., 95, 1-91 (2002) · Zbl 1075.14012 · doi:10.1007/s102400200003
[16] Guill{\'e}n, F.; Navarro, V.; Pascual, P.; Roig, Agust{\'{\i }}, A Cartan-Eilenberg approach to homotopical algebra, J. Pure Appl. Algebra, 214, 2, 140-164 (2010) · Zbl 1198.18006 · doi:10.1016/j.jpaa.2009.04.009
[17] Hain, Richard M., The de Rham homotopy theory of complex algebraic varieties. II, \(K\)-Theory, 1, 5, 481-497 (1987) · Zbl 0657.14004 · doi:10.1007/BF00536980
[18] Halperin, Stephen; Tanr{\'e}, Daniel, Homotopie filtr\'e e et fibr\'es \(C^\infty \), Illinois J. Math., 34, 2, 284-324 (1990) · Zbl 0679.55011
[19] Hovey, Mark, Model categories, Mathematical Surveys and Monographs 63, xii+209 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0909.55001
[20] Kamps, K. H.; Porter, T., Abstract homotopy and simple homotopy theory, x+462 pp. (1997), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 0890.55014 · doi:10.1142/9789812831989
[21] Morgan, John W., The algebraic topology of smooth algebraic varieties, Inst. Hautes \'Etudes Sci. Publ. Math., 48, 137-204 (1978) · Zbl 0401.14003
[22] Navarro Aznar, V., Sur la th\'eorie de Hodge-Deligne, Invent. Math., 90, 1, 11-76 (1987) · Zbl 0639.14002 · doi:10.1007/BF01389031
[23] Quillen, Daniel G., Homotopical algebra, Lecture Notes in Mathematics, No. 43, iv+156 pp. (not consecutively paged) pp. (1967), Springer-Verlag, Berlin-New York · Zbl 0168.20903
[24] [RB] A. Radulescu-Banu, Cofibrations in homotopy theory, Preprint, arXiv:math/0610009v4 [math.AT] (2009).
[25] Rodr{\'{\i }}guez Gonz{\'a}lez, Beatriz, Simplicial descent categories, J. Pure Appl. Algebra, 216, 4, 775-788 (2012) · Zbl 1276.14034 · doi:10.1016/j.jpaa.2011.10.003
[26] Sullivan, Dennis, Infinitesimal computations in topology, Inst. Hautes \'Etudes Sci. Publ. Math., 47, 269-331 (1978) (1977) · Zbl 0374.57002
[27] Thomason, R. W., Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc., 85, 1, 91-109 (1979) · Zbl 0392.18001 · doi:10.1017/S0305004100055535
[28] Totaro, B., Topology of singular algebraic varieties. Proceedings of the International Congress of Mathematicians, Vol. II , Beijing, 2002, 533-541 (2002), Higher Ed. Press, Beijing · Zbl 1057.14030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.