×

Beyond just “flattening the curve”: optimal control of epidemics with purely non-pharmaceutical interventions. (English) Zbl 1469.92113

Summary: When effective medical treatment and vaccination are not available, non-pharmaceutical interventions such as social distancing, home quarantine and far-reaching shutdown of public life are the only available strategies to prevent the spread of epidemics. Based on an extended SEIR (susceptible-exposed-infectious-recovered) model and continuous-time optimal control theory, we compute the optimal non-pharmaceutical intervention strategy for the case that a vaccine is never found and complete containment (eradication of the epidemic) is impossible. In this case, the optimal control must meet competing requirements: First, the minimization of disease-related deaths, and, second, the establishment of a sufficient degree of natural immunity at the end of the measures, in order to exclude a second wave. Moreover, the socio-economic costs of the intervention shall be kept at a minimum. The numerically computed optimal control strategy is a single-intervention scenario that goes beyond heuristically motivated interventions and simple “flattening of the curve”. Careful analysis of the computed control strategy reveals, however, that the obtained solution is in fact a tightrope walk close to the stability boundary of the system, where socio-economic costs and the risk of a new outbreak must be constantly balanced against one another. The model system is calibrated to reproduce the initial exponential growth phase of the COVID-19 pandemic in Germany.

MSC:

92D30 Epidemiology

Software:

bvp4c; GitHub

References:

[1] Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, GF; Tan, W., A novel coronavirus from patients with pneumonia in China, N Engl J Med, 382, 8, 727-733 (2020) · doi:10.1056/NEJMoa2001017
[2] Wu, F.; Zhao, S.; Yu, B., A new coronavirus associated with human respiratory disease in China, Nature, 579, 265-269 (2020) · doi:10.1038/s41586-020-2008-3
[3] Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, CM; Divatia, JV; Shrestha, BR; Arabi, YM; Ng, J.; Gomersall, CD; Nishimura, M.; Koh, Y.; Du, B., Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations, Lancet Resp Med (2020) · doi:10.1016/s2213-2600(20)30161-2
[4] Ferguson NM, Laydon D, Nedjati-Gilani G et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College Lond (16-03-2020) (2020). 10.25561/77482.
[5] Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, HJT; Mellan, TA; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, JW; Monod, M.; Ghani, AC; Donnelly, CA; Riley, SM; Vollmer, MAC; Ferguson, NM; Okell, LC; Bhatt, S.; Imperial College COVID-19 Response Team, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature (2020) · doi:10.1038/s41586-020-2405-7
[6] Chang SL, Harding N, Zachreson C, Cliff OM, Prokopenko M. Modelling transmission and control of the COVID-19 pandemic in Australia. 2020. arXiv:2003.10218.
[7] Ng, KY; Gui, MM, COVID-19: development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility, Phys D, Nonlinear Phenom, 411 (2020) · Zbl 1486.92262 · doi:10.1016/j.physd.2020.132599
[8] Bouchnita, A.; Jebrane, A., A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions, Chaos Solitons Fractals, 138 (2020) · doi:10.1016/j.chaos.2020.109941
[9] Jia, J.; Ding, J.; Liu, S.; Liao, G.; Li, J.; Duan, B.; Wang, G.; Zhang, R., Modeling the control of COVID-19: impact of policy interventions and meteorological factors, Electron J Differ Equ, 23 (2020) · Zbl 1448.92130
[10] Kucharski, AJ; Russell, TW; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, RM; Sun, F.; Jit, M.; Munday, JD; Davies, N.; Gimma, A.; van Zandvoort, K.; Gibbs, H.; Hellewell, J.; Jarvis, CI; Clifford, S.; Quilty, BJ; Bosse, NI; Abbott, S.; Klepac, P.; Flasche, S., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect Dis, 20, 5, 553-558 (2020) · doi:10.1016/S1473-3099(20)30144-4
[11] Barbarossa MV, Fuhrmann J, Heidecke J, Vinod Varma H, Castelletti N, Meinke JH, Krieg S, Lippert T. A first study on the impact of current and future control measures on the spread of COVID-19 in Germany. medRxiv 2020. 10.1101/2020.04.08.20056630.
[12] Kissler, SM; Tedijanto, C.; Goldstein, E.; Grad, YH; Lipsitch, M., Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period, Science, 368, 6493, 860-868 (2020) · doi:10.1126/science.abb5793
[13] Sesterhenn JL. Adjoint-based data assimilation of an epidemiology model for the Covid-19 pandemic in 2020. 2020. arXiv:2003.13071.
[14] Khailaie S, Mitra T, Bandyopadhyay A, Schips M, Mascheroni P, Vanella P, Lange B, Binder S, Meyer-Hermann M. Estimate of the development of the epidemic reproduction number \(R_t\) from coronavirus SARS-CoV-2 case data and implications for political measures based on prognostics. medRxiv 2020. 10.1101/2020.04.04.20053637.
[15] Engbert R, Rabe MM, Kliegl R, Reich S. Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics. medRxiv 2020. 10.1101/2020.04.13.20063768.
[16] Dehning, J.; Zierenberg, J.; Spitzner, FP; Wibral, M.; Neto, JP; Wilczek, M.; Priesemann, V., Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions, Science (2020) · doi:10.1126/science.abb9789
[17] Brauner JM, Mindermann S, Sharma M, Stephenson AB, Gavenčiak T, Johnston D, Salvatier J, Leech G, Besiroglu T, Altman G, Ge H, Mikulik V, Hartwick M, Teh YW, Chindelevitch L, Gal Y, Kulveit J. The effectiveness and perceived burden of nonpharmaceutical interventions against COVID-19 transmission: a modelling study with 41 countries. medRxiv 2020. 10.1101/2020.05.28.20116129.
[18] Tsay, C.; Lejarza, F.; Stadtherr, MA; Baldea, M., Modeling, state estimation, and optimal control for the US COVID-19 outbreak, Sci Rep, 10 (2020) · doi:10.1038/s41598-020-67459-8
[19] Tarrataca L, Dias CM, Haddad DB, Arruda EF. Flattening the curves: on-off lock-down strategies for COVID-19 with an application to Brazil. 2020. arXiv:2004.06916.
[20] Bin M, Cheung P, Crisostomi E, Ferraro P, Lhachemi H, Murray-Smith R, Myant C, Parisini T, Shorten R, Stein S, Stone L. On fast multi-shot COVID-19 interventions for post lock-down mitigation. 2020. arXiv:2003.09930.
[21] Lewis, FL; Vrabie, D.; Syrmos, VL, Optimal control (2012), New York: Wiley, New York
[22] Pontryagin, LS; Boltyanskii, VG; Gamkrelidze, RV; Mishchenko, EF, The mathematical theory of optimal processes (1962), New York: Wiley, New York · Zbl 0102.32001
[23] Wickwire, K., Mathematical models for the control of pests and infectious diseases: a survey, Theor Popul Biol, 11, 2, 182-238 (1977) · Zbl 0356.92001 · doi:10.1016/0040-5809(77)90025-9
[24] Sharomi, O.; Malik, T., Optimal control in epidemiology, Ann Oper Res, 251, 1-2, 55-71 (2015) · Zbl 1373.92140 · doi:10.1007/s10479-015-1834-4
[25] Behncke, H., Optimal control of deterministic epidemics, Optim Control Appl Methods, 21, 6, 269-285 (2000) · Zbl 1069.92518 · doi:10.1002/oca.678
[26] Nowzari, C.; Preciado, VM; Pappas, GJ, Analysis and control of epidemics: a survey of spreading processes on complex networks, IEEE Control Syst Mag, 36, 1, 26-46 (2016) · Zbl 1476.92046 · doi:10.1109/MCS.2015.2495000
[27] Lenhart, S.; Workman, JT, Optimal control applied to biological models (2007), Boca Raton: Chapman & Hall/CRC Press, Boca Raton · Zbl 1291.92010
[28] Morton, R.; Wickwire, KH, On the optimal control of a deterministic epidemic, Adv Appl Probab, 6, 4, 622-635 (1974) · Zbl 0324.92029 · doi:10.1017/s0001867800028482
[29] Abakuks, A., Optimal immunisation policies for epidemics, Adv Appl Probab, 6, 3, 494-511 (1974) · Zbl 0288.92017 · doi:10.2307/1426230
[30] Zaman, G.; Han Kang, Y.; Jung, IH, Stability analysis and optimal vaccination of an SIR epidemic model, Biosystems, 93, 3, 240-249 (2008) · doi:10.1016/j.biosystems.2008.05.004
[31] Kar, T.; Batabyal, A., Stability analysis and optimal control of an SIR epidemic model with vaccination, Biosystems, 104, 2, 127-135 (2011) · doi:10.1016/j.biosystems.2011.02.001
[32] Zaman, G.; Kang, YH; Jung, IH, Optimal treatment of an SIR epidemic model with time delay, Biosystems, 98, 43-50 (2009) · doi:10.1016/j.biosystems.2009.05.006
[33] Liddo, AD, Optimal control and treatment of infectious diseases. The case of huge treatment costs, Mathematics, 4, 2 (2016) · Zbl 1358.92087 · doi:10.3390/math4020021
[34] Gaff, H.; Schaefer, E., Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math Biosci Eng, 6, 469-492 (2009) · Zbl 1169.49018 · doi:10.3934/mbe.2009.6.469
[35] Hansen, E.; Day, T., Optimal control of epidemics with limited resources, J Math Biol, 62, 3, 423-451 (2011) · Zbl 1232.92064 · doi:10.1007/s00285-010-0341-0
[36] Iacoviello, D.; Stasio, N., Optimal control for sirc epidemic outbreak, Comput Methods Programs Biomed, 110, 3, 333-342 (2013) · doi:10.1016/j.cmpb.2013.01.006
[37] Bolzoni, L.; Bonacini, E.; Soresina, C.; Groppi, M., Time-optimal control strategies in SIR epidemic models, Math Biosci, 292, 86-96 (2017) · Zbl 1378.92065 · doi:10.1016/j.mbs.2017.07.011
[38] Barro, M.; Guiro, A.; Ouedraogo, D., Optimal control of a SIR epidemic model with general incidence function and a time delays, CUBO, 20, 2, 53-66 (2018) · Zbl 1442.49057 · doi:10.4067/s0719-06462018000200053
[39] Bolzoni, L.; Bonacini, E.; Della Marca, R.; Groppi, M., Optimal control of epidemic size and duration with limited resources, Math Biosci, 315 (2019) · Zbl 1425.92178 · doi:10.1016/j.mbs.2019.108232
[40] Djidjou-Demasse R, Michalakis Y, Choisy M, Sofonea MT, Alizon S. Optimal COVID-19 epidemic control until vaccine deployment. medRxiv 2020. 10.1101/2020.04.02.20049189.
[41] Perkins TA, España G. Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions. medRxiv 2020. 10.1101/2020.04.22.20076018. · Zbl 1448.92139
[42] Kruse T, Strack P. Optimal control of an epidemic through social distancing. SSRN Electron J 2020;3581295. 10.2139/ssrn.3581295.
[43] Ketcheson DI. Optimal control of an sir epidemic through finite-time non-pharmaceutical intervention. 2020. arXiv:2004.08848.
[44] Alvarez FE, Argente D, Lippi F. A simple planning problem for COVID-19 lockdown. Cambridge, MA. 2020. Tech. rep, NBER Working Paper No. 26981.
[45] Bonnans JF, Gianatti J. Optimal control techniques based on infection age for the study of the COVID-19 epidemic. 2020. HAL-02558980v2. · Zbl 1446.49019
[46] Köhler J, Schwenkel L, Koch A, Berberich J, Pauli P, Allgöwer F. Robust and optimal predictive control of the COVID-19 outbreak. 2020. arXiv:2005.03580.
[47] Miclo L, Spiro D, Weibull J. Optimal epidemic suppression under an ICU constraint. 2020. arXiv:2005.01327.
[48] Charpentier A, Elie R, Laurière M, Tran VC. COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability. 2020. arXiv:2005.06526. · Zbl 1467.92182
[49] Kermack, WO; McKendrick, AG; Walker, GT, A contribution to the mathematical theory of epidemics, Proc R Soc Lond A-CONTA, 115, 772, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[50] Hethcote, HW, The mathematics of infectious diseases, SIAM Rev, 42, 4, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/s0036144500371907
[51] Brauer, F., Compartmental models in epidemiology, Mathematical epidemiology, 19-79 (2008), Berlin: Springer, Berlin · Zbl 1206.92023
[52] Epstein, JM, Modelling to contain pandemics, Nature, 460 (2009) · doi:10.1038/460687a
[53] Rahmandad, H.; Sterman, J., Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models, Manag Sci, 54, 5, 998-1014 (2008) · doi:10.1287/mnsc.1070.0787
[54] Neher R, Aksamentov I, Noll N, Albert J, Dyrdak R. COVID-19 scenarios. Online (2020). https://github.com/neherlab/covid19_scenarios. Accessed on April 16, 2020
[55] Noll NB, Aksamentov I, Druelle V, Badenhorst A, Ronzani B, Jefferies G, Albert J, Neher R. COVID-19 scenarios: an interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2. medRxiv 2020. 10.1101/2020.05.05.20091363.
[56] Wilson N, Telfar Barnard L, Kvalsig A, Verrall A, Baker MG, Schwehm M. Modelling the potential health impact of the COVID-19 pandemic on a hypothetical European country. medRxiv 2020. 10.1101/2020.03.20.20039776.
[57] Neher, RA; Dyrdak, R.; Druelle, V.; Hodcroft, EB; Albert, J., Potential impact of seasonal forcing on a SARS-CoV-2 pandemic, Swiss Med Wkly, 150 (2020) · doi:10.4414/smw.2020.20224
[58] Lloyd-Smith, JO; Schreiber, SJ; Kopp, PE; Getz, WM, Superspreading and the effect of individual variation on disease emergence, Nature, 438, 355-359 (2005) · doi:10.1038/nature04153
[59] Diekmann, O.; Heesterbeek, JAP; Metz, JAJ, On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J Math Biol, 28, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/bf00178324
[60] Shampine, LF; Gladwell, I.; Shampine, L.; Thompson, S., Solving ODEs with Matlab (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1079.65144
[61] Richard Q, Alizon S, Choisy M, Sofonea MT, Djidjou-Demasse R. Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic. medRxiv 2020. 10.1101/2020.06.23.20138099.
[62] Meyer-Hermann M, Pigeot I, Priesemann V, Schöbel A. Adaptive Strategien zur Eindämmung der COVID-19-Epidemie. 2020. Tech. rep, Accessed on July 13, 2020. https://www.mpg.de/14760567/28-04-2020_Stellungnahme_Teil_02.pdf.
[63] Wiestler OD, Marquardt W, Heinz D, Meyer-Hermann M. Stellungnahme der Helmholtz-Initiative “Systemische Epidemiologische Analyse der COVID-19-Epidemie”. (April 13, 2020) (2020). https://www.helmholtz.de/fileadmin/user_upload/01_forschung/Helmholtz-COVID-19-Papier_02.pdf. Accessed on April 17, 2020.
[64] Robert Koch-Institute: Archiv der Situationsberichte des Robert Koch-Instituts zu COVID-19. Online (2020). https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Archiv.html. Accessed on April 15, 2020
[65] NPGEO Corona: RKI COVID19. Online (2020). https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/. Accessed on April 16, 2020
[66] Lauer, SA; Grantz, KH; Bi, Q.; Jones, FK; Zheng, Q.; Meredith, HR; Azman, AS; Reich, NG; Lessler, J., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann Intern Med, 172, 9, 577-582 (2020) · doi:10.7326/M20-0504
[67] Koch-Institute R. (COVID-19). Online (2020). SARS-CoV-2 Steckbrief zur Coronavirus-Krankheit-2019. https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html. Accessed on April 14, 2020.
[68] Verity, R.; Okell, LC; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, PGT; Fu, H.; Dighe, A.; Griffin, JT; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cori, A.; Cucunubá, Z.; FitzJohn, R.; Gaythorpe, K.; Green, W.; Hamlet, A.; Hinsley, W.; Laydon, D.; Nedjati-Gilani, G.; Riley, S.; van Elsland, S.; Volz, E.; Wang, H.; Wang, Y.; Xi, X.; Donnelly, CA; Ghani, AC; Ferguson, NM, Estimates of the severity of coronavirus disease 2019: a model-based analysis, Lancet Infect Dis, 20, 6, 669-677 (2020) · doi:10.1016/s1473-3099(20)30243-7
[69] Robert Koch-Institute: Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19): April 8, 2020. Online (2020). https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-04-08-de.pdf. Accessed on April 14, 2020
[70] German Interdisciplinary Society for Intensive Care Medicine (DIVI): DIVI Intensivregister. https://www.divi.de/register/intensivregister
[71] Robert Koch-Institute: Täglicher Lagebericht des RKI zur Coronavirus-Krankheit-2019 (COVID-19): March 27, 2020. Online (2020). https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/2020-03-27-de.pdf. Accessed on April 14, 2020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.