×

Totally transcendental theories of modules: Decomposition of models and types. (English) Zbl 0802.03032

In this paper I study totally transcendental (tt) theories of modules in a general setting, and with a strong emphasis on model-theoretic (as opposed to algebraic) techniques. In particular, I am able to characterize fundamental stability-theoretic concepts such as non-forking independence, regularity and weight. Although the theorems on independence are not new, in my proofs I try to emphasize how algebraic properties follow naturally from the general properties of totally transcendental theories. Among other things, I am able to recover the existence and basic facts about compact (pure-injective) hulls as a consequence of these properties.
One of the important ideas underlying this work is that \(S_ 1(\emptyset)\), the set of 1-types over \(\emptyset\), is a natural analogue of the ideal lattice of a ring. Throughout this paper I relate the general results to a specific theory \(T^*_ \Lambda\), that of existentially closed modules over a Noetherian ring \(\Lambda\), where in fact \(S_ 1(\emptyset)\) ‘is’ the ideal lattice of \(\Lambda\). This analogy has been noted by other authors and exploited to great effect. In particular, see the work of Prest.
Using the ideas described above, I am able to prove two important theorems about tt theories of modules. First I provide an entirely model- theoretic proof of Garavaglia’s theorem that every tt module can be written uniquely as a direct sum of indecomposable modules. In this proof I use my characterization of the stability-theoretic concept of weight to avoid the use of an algebraic result, the Krull-Remak-Schmidt-Azumaya lemma. Then I prove a decomposition theorem for \(S_ 1(\emptyset)\) which, by the analogy between \(S_ 1(\emptyset)\) and the ideal lattice, is a generalization of Lesieur and Croisot’s extension of the classic Lasker-Noether normal decomposition theorem for ideals in a commutative Noetherian ring.

MSC:

03C60 Model-theoretic algebra
03C45 Classification theory, stability, and related concepts in model theory
13L05 Applications of logic to commutative algebra
16B70 Applications of logic in associative algebras
Full Text: DOI

References:

[1] Baur, W., Elimination of quantifiers for modules, Israel J. Math., 25, 64-70 (1976) · Zbl 0354.02043
[2] Bouscaren, E., Théorie des modelès: Modules existentiellement clos: types et modèles premiers, These de 3ème cycle (1979), Universitè Paris VII
[3] Bouscaren, E., Existentially closed modules: types and prime models, (Pacholski, L.; Wierzejewski, J.; Wilkie, A. J., Model Theory of Algebra and Arithmetic, 834 (1980), Springer: Springer Berlin), 31-43, Lecture Notes in Math · Zbl 0471.03030
[4] Chang, C. C.; Keisler, H. J., Model Theory (1973), North-Holland: North-Holland Amsterdam · Zbl 0276.02032
[5] Eklof, P.; Sabbagh, G., Model completions and modules, Ann. Math. Logic, 2, 251-295 (1971) · Zbl 0227.02029
[6] Fisher, E., Abelian structures I, (Arnold, D.; Hunter, R.; Walker, E., Abelian Group Theory, 616 (1977), Springer: Springer Berlin), 270-322, Lecture Notes in Math · Zbl 0414.18001
[7] Garavaglia, S., Dimension and rank in the model theory of modules (1980), University of Michigan, Preprint
[8] Garavaglia, S., Direct product decomposition of theories of modules, J. Symbolic Logic, 44, 77-88 (1979) · Zbl 0438.03038
[9] Garavaglia, S., Decomposition of totally transcendental modules, J. Symbolic Logic, 45, 155-164 (1980) · Zbl 0453.03036
[10] Garavaglia, S., Forking in modules, Notre Dame J. Formal Logic, 22, 155-162 (1981) · Zbl 0438.03037
[11] Harnik, V.; Harrington, L., Fundamentals of forking, Ann. Pure Appl. Logic, 26, 245-286 (1984) · Zbl 0591.03016
[12] Kucera, T., Decomposition of injective modules over a Noetherian ring, Preliminary Report, Abstracts A.M.S. 80T-E86, Vol. 1, 7 (1980)
[13] Kucera, T., Applications of stability-theoretical methods to theories of modules, Ph.D. Thesis (1984), McGill University: McGill University Montreal
[14] Kucera, T., Stability theory for topological logic, with applications to topological modules, J. Symbolic Logic, 51, 755-769 (1986) · Zbl 0625.03018
[15] Lambek, J.; Michler, G., The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra, 25, 364-389 (1973) · Zbl 0259.16018
[16] Lascar, D., Ordre de Rudin-Keisler et poids dans les théories stables, Z. Math. Logik Grundlag. Math., 28, 413-430 (1982) · Zbl 0497.03020
[17] Lascar, D.; Poizat, B., Introduction to forking, J. Symbolic Logic, 44, 330-350 (1979) · Zbl 0424.03013
[18] Lesieur, L.; Croisot, R., Théorie Noethérienne des anneaux, des demi-groupes et des modules dans le cas non-commutatif II, Math. Annalen, 134, 458-476 (1958) · Zbl 0080.02805
[19] Makkai, M., A survey of basic stability theory, with particular emphasis on orthogonality and regular types, Israel J. Math., 49, 181-238 (1984) · Zbl 0583.03021
[20] Matlis, E., Injective modules over Noetherian rings, Pacific J. Math., 8, 511-528 (1958) · Zbl 0084.26601
[21] Monk, L., Elementary-recursive decision procedures, Ph.D. Dissertation (1975), Berkeley
[22] Northcott, D. J., Ideal Theory, Cambridge Tracts in Math. and Math. Physics, 42 (1953), Cambridge University Press · Zbl 0052.26801
[23] Pillay, A.; Prest, M., Forking and pushouts in modules, Proc. London Math. Soc., 46, 3, 365-384 (1983) · Zbl 0509.03018
[24] Poizat, B., Déviation des types, Thèse de doctorate d’état (1977), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris
[25] Prest, M., Pure-injectives and T-injective hulls of modules (1981), Preprint
[26] Prest, M., The generalized RK-order, orthogonality and regular types for modules, J. Symbolic Logic, 50, 202-219 (1985) · Zbl 0614.03029
[27] Prest, M., Rings of finite representation type and modules of finite Morley rank, J. Algebra, 88, 502-533 (1984) · Zbl 0538.16025
[28] M. Prest, Lecture Notes on the Model Theory of Modules, to appear.; M. Prest, Lecture Notes on the Model Theory of Modules, to appear. · Zbl 0634.03025
[29] Rothmaler, P., Some model theory of modules I: on total transcendence of modules, J. Symbolic Logic, 49, 570-574 (1983) · Zbl 0524.03018
[30] Rothmaler, P., Some model theory of modules II: on stability and categoricity of flat modules, J. Symbolic Logic, 48, 970-985 (1983) · Zbl 0524.03019
[31] Sabbagh, G., (Aspects logique de la purété dans les modules, 271 (1970), C.R. Acad. Sci: C.R. Acad. Sci Paris), 909-912 · Zbl 0202.00901
[32] Sharpe, D. W.; Vámos, P., Injective Modules, Cambridge Tracts in Math. and Math. Physics, 62 (1973), Cambridge University Press · Zbl 0245.13001
[33] Shelah, S., Classification Theory and the Number of Non-isomorphic Models (1978), North-Holland: North-Holland Amsterdam · Zbl 0388.03009
[34] Wenzel, G. H., Equational compactness, Appendix 6 of: G. Grätzer, Universal Algebra (1979), Springer: Springer New York
[35] Ziegler, M., Model theory of modules, Ann. Pure Appl. Logic, 26, 149-213 (1984) · Zbl 0593.16019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.