×

A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. (English) Zbl 0539.93064

The problem of uniform asymptotic stabilization of neutral delay differential systems is considered. The results are based on an algebraic model of neutral systems over a ring of rational functions \(R_{\delta}\) of the delay operators. In terms of the two matrices with the entries in \(R_{\delta}\) associated with a given system, sufficient conditions of stabilizability are formulated. The stabilizing feedback is constructed with the help of the solution of an algebraic Riccati equation with the coefficients analytically depending on a parameter in \({\mathbb{C}}^ n\). The Docquir-Grauert theorem and the multivariable argument principle of complex analysis are used as the important technical tools. The Docquir- Grauert theorem is applied to prove that every projective finitely- generated module over \(R_{\delta}\) is free. This result is then used to study the canonical Brunovsky forms of some systems over \(R_{\delta}\). The multivariable argument principle is applied to the analysis of the analytical properties of the solution of the algebraic Riccati equation, depending on a parameter. In this connection, a notion of solvability is introduced and then utilized in the formulation of the sufficient conditions of stabilizability. Numerous examples are considered. This paper gives an excellent example of the fruitful interaction between complex analysis and system theory.
Reviewer: L.E.Faibusovich

MSC:

93D15 Stabilization of systems by feedback
34K20 Stability theory of functional-differential equations
32A27 Residues for several complex variables
13C10 Projective and free modules and ideals in commutative rings
93B10 Canonical structure
15A24 Matrix equations and identities
Full Text: DOI

References:

[1] Anderson, B. D. O. and Moore, J. B., Linear systems optimization with prescribed degree of stability,Proc. IEEE 116, 2083–2087 (1969).
[2] Asner, B. A. and Halanay, A., Delay-feedback using derivatives for minimal time linear control problems,J. Math. Anal. Appl. 48, 257–263 (1974). · Zbl 0291.93039 · doi:10.1016/0022-247X(74)90230-3
[3] Auslander, M. and Buchsbaum, D.,Groups, Rings and Modules, Harper and Row, New York, 1974. · Zbl 0325.13001
[4] Bass, R. W. and Gura, I., High order design via state-space considerations,Proc. 1965JACC, Troy, N.Y., 311–318 (1965).
[5] Bers, L.,Introduction to Several Complex Variables, Courant Inst. Math. Sciences, New York, 1964.
[6] Bourbaki, N.,Commutative Algebra, Addison-Wesley, New York, 1972. · Zbl 0279.13001
[7] Brayton, R. K., Small signal stability criterion for electrical networks containing lossless transmission lines,”IBM J. Res. and Development 12, 431–440 (1968). · Zbl 0172.20703 · doi:10.1147/rd.126.0431
[8] Brockett, R. W., Structural properties of the equilibrium solutions of Riccati equations,” Lecture Notes on Math. V. 132, pp. 61–69, Springer-Verlag, New York, 1970. · Zbl 0207.08406
[9] Brylawski, T., The lattice of integer partitions,Discrete Mathematics, 6 (1973). · Zbl 0283.06003
[10] Bumby, R., Sontag, E. D., Sussmann, H. J. and Vasconcelos, W., Remarks on the pole-shifting problem over rings,J. Pure Appl. Algebra 20, 113–127 (1981). · Zbl 0455.15009 · doi:10.1016/0022-4049(81)90087-6
[11] Byrnes, C. I., On the control of certain infinite-dimensional linear systems by Algebro-geometric techniques,Amer. J. Math. 100, 1333–1381 (1978). · Zbl 0406.93017 · doi:10.2307/2373976
[12] Brynes, C. I., Realization theory and quadratic optimal controllers for systems defined over Banach and Frechet algebras,Proc. of the IEEE Conf. on Decision and Control (1980).
[13] Byrnes, C. I., Algebraic and geometric aspects of the analysis of feedback systems, inGeometrical Methods for the Theory of Linear Systems, Byrnes, Martin eds., D. Reidel Pub., 85–124 (1979).
[14] Byrnes, C. I. and Falb, P. L., Applications of algebraic geometry in system theory,Amer. J. Math., 101, 337–363 (1979). · Zbl 0436.93013 · doi:10.2307/2373982
[15] Cooke, K. L. and Krumme, D. W., Differential-difference equations and non-linear initialboundary value problems for linear hyperbolic partial differential equations,J. of Math. Anal. and Appl. 24, 372–387 (1968). · Zbl 0186.16902 · doi:10.1016/0022-247X(68)90038-3
[16] Cruz, M. and Hale, J. K., Stability of functional differential equations of neutral type,J. of Diff. Equations 7, 334–355 (1970). · Zbl 0191.38901 · doi:10.1016/0022-0396(70)90114-2
[17] DeCarlo, R. A., Murray, J. and Saeks, R., Multivariable Nyquist theory,Int. J. Control 25, 657–675 (1977). · Zbl 0357.93038 · doi:10.1080/00207177708922261
[18] Delchamps, D., A note on the analyticity of the Riccati metric, inAlgebraic and Geometric Methods in Linear System Theory (C. I. Byrnes and C. R. Martin, eds.),Lectures in Applied Math. 18, A.M.S., Providence, RI, 37–41 (1980).
[19] Delfour, M. C. and Mitter, S. K., Hereditary differential systems with constant delays, I. The General case,J. of Diff. Equations 12, 213–235 (1972). · Zbl 0242.34055 · doi:10.1016/0022-0396(72)90030-7
[20] Docquier, F. and Grauert, H., Levisches Probleme und rugescher Zatz fur taugebeite steinsche Mannigfaltichkeiten,Math. Ann., 140, 94–123 (1960). · Zbl 0095.28004 · doi:10.1007/BF01360084
[21] Gunning, R. C. and Rossi, H.,Analytic Functions of Several Complex Variables, Prentice-Hall, NJ, 1965. · Zbl 0141.08601
[22] Hale, J. K.,Functional Differential Equations, Springer-Verlag, New York, 1972. · Zbl 0334.34058
[23] Hazewinkel, M. and Martin, C. F., Representation of the symmetric group, the specialization order, systems, and Grassman manifolds, preprint (1982).
[24] Hormander, L.,An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1973.
[25] Ito, K., Linear functional differential equations and control and estimation problems, D.Sc. Thesis, Washington University, 1981.
[26] Jacobs, M. Q. and Langenhop, C. E., Criteria for function space controllability of linear neutral systems,SIAM J. Cont. and Opt., 14, 1009–1048 (1976). · Zbl 0344.93014 · doi:10.1137/0314064
[27] Kamen, E. W., An operator theory of linear functional differential equations,J. of Diff. Equations 27, 274–297 (1978). · Zbl 0365.34080 · doi:10.1016/0022-0396(78)90034-7
[28] Kamen, E. W. and Green, W. L., Asymptotic stability of linear difference equations defined over a commutative Banach algebra,J. Math. Anal. Appl. 75 (1980), 584–601. · Zbl 0471.39006 · doi:10.1016/0022-247X(80)90103-1
[29] Kamen, E., Linear systems with commensurate time delays: stability and stabilization independent of delay,IEEE Trans. AC-27 No. 2, 367–375 (April 1982). · Zbl 0517.93047
[30] Kamen, E., Khargonekar, P. and Tannenbaum, A., Pointwise stability and feedback control of linear systems with non-commensurate time delays, Preprint (Dec. 1982). · Zbl 0561.93045
[31] Kappel, F., Degenerate difference-differential equations: algebraic theory,Journal of Diff. Equations, 24, 99–126 (1977). · Zbl 0357.34062 · doi:10.1016/0022-0396(77)90172-3
[32] Lang, S.,Algebra, Addison-Wesley, Reading, MA (1965).
[33] Lee, E. B., Neftci, S. and Olbrot, A., Canonical forms for time delay systems,IEEE Trans. AC-27, No. 1, 128–132 (1982). · Zbl 0469.93027
[34] Lee, E. B. and Zak, S. H., On spectrum placement for linear time invariant delay systems,IEEE Trans. AC-27, No. 2, 446–449 (April 1982). · Zbl 0492.93019
[35] Lee, E. B., Zak, S. H. and Brierley, S. D., Stabilization of generalized linear systems via the algebraic Riccati equation, International Conference on Systems Engineering II, Coventry, U.K., Sept. 1982.
[36] Luenberger, D. G., Dynamic equations in description form,IEEE Trans. AC-22, No. 3 (June 1977). · Zbl 0354.93007
[37] Morse, A. S., Ring models for delay-differential systems,Automatica 12, 529–531 (1976). · Zbl 0345.93023 · doi:10.1016/0005-1098(76)90013-3
[38] Mumford, D.,Introduction to Algebraic Geometry, Harvard University Press, Cambridge, MA (1965).
[39] O’Connor, D. and Tarn, T. J., On stabilization by state feedback for neutral differential difference equations,IEEE Trans. AC-28, No. 3 (1983).
[40] Pandolfi, L., Stabilization of neutral functional difference equations,J. Opt. Theory and Appl. 20 (1976). · Zbl 0313.93023
[41] Shatz, S. S., The Decomposition and specialization of algebraic families of vector bundles,Comp. Math., 35, 163–187 (1977). · Zbl 0371.14010
[42] Sontag, E. D., Linear systems over commutative rings: a survey,Richerche Di Automatica 7, 1–32 (1976).
[43] Spong, M. W., Realization and feedback stabilization of linear neutral systems, D.Sc. Thesis, Washington University, 1981.
[44] Spong, M. W. and Tarn, T. J., Structure and regulation of linear neutral delay differential systems, 21st CDC, Orlando, (Dec. 1982).
[45] Spong, M. W. and Tarn, T. J., Realization of linear neutral delay differential systems, 16th CISS, Princeton (May 1982).
[46] Tarn, T. J., Spong, M. W. and Ito, K., Feedback stabilization and control of linear neutral systems, Proc. 19th Allerton Conference, Urbana, Ill. (1981).
[47] Verghese, G. C., Levy, B. and Kailath, T., A generalized state space for singular systems,IEEE Trans. AC-26, No. 4 (Aug. 1981). · Zbl 0446.93005
[48] Youla, D., The synthesis of networks containing lumped and distributed parameters,Network and Switching Theory II, 73–133 (1968). · Zbl 0197.14301
[49] Ansell, H. C., On certain two-variable generalizations of circuit theory, with applications to networks of transmission lines and lumped reactances,IEEE Transactions on Circuit Theory, II, 214–223, (1964).
[50] Newcomb, R. W., On the realization of multivariable transfer functions, Research Report EERI 58, Cornell Univ. (1966). · Zbl 0282.93048
[51] Kamen, E. W., On an Algebraic Theory of Systems Defined by Convolution Operators,Math. Systems Theory, 9, No. 1, 57–74 (1975). · Zbl 0318.93003 · doi:10.1007/BF01698126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.